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1.1 Introduction

In the past years, the development of novel image and video coding technologies
has spurred the interest in developing digital video communications. The
definition of evaluation mechanisms to assess the video quality plays a major
role in the overall design of video communication systems.

As [2] explains, the image quality measurement is very important for most
image processing applications. An image quality metric has mainly three kinds of
applications:

It can be used to monitor image quality as for example in an image and video
acquisition system which can use the quality metric to monitor and automatically
adjust the system to obtain the best quality. Or also a network video server can
use it to examine the quality of the digital video transmitted and control the video
streaming. It can be also employed to benchmark image processing systems,
algorithms and encoder proposals. And it can be embedded into an image
processing system to optimize the algorithms and the parameter settings. For
instance, in a visual communication system, a quality metric can help optimal
design of the prefiltering and bit assignment algorithms at the encoder and the
postprocessing algorithms at the decoder.

The most reliable way of assessing the quality of a video or image is
subjective evaluation, because human beings are the ultimate receivers in most
applications. But this way of assess image quality is not appropriate for the
mentioned applications.

The Mean Opinion Score (MOS), which is a subjective quality metric obtained
from a number of human observers, has been regarded for many years as the most
reliable form of quality measurement. However in order to achieve statistically
relevant results, the MOS method has to evaluate a huge test population, so itis
too cumbersome, time consuming, not suited for real-time and is expensive for
most applications.

The MOS, is generated by averaging the results of a set of subjective tests,
where a number of viewers rate the image or video quality of the presented images
or sequences, by the way of one of the standardized methodologies proposed in
the following international recommendations:

• ITU-R BT.500-11 (2002) & ITU-R BT.500-12 (09/2009) [3, 4] Methodology
for the subjective assessment of the quality of television pictures: This
Recommendation provides methodologies for the assessment of picture
quality including general methods of test, the grading scales and the viewing
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(a) (b)

Figure 1.1: Presentation sequence and rating scale for (a) DSCQS (b)DSIS, methods

conditions. It recommends the Double-Stimulus Impairment Scale (DSIS)
method and the Double-Stimulus Continuous Quality-Scale (DSCQS) method
as well as alternative assessment methods such as Single-Stimulus (SS)
methods, stimulus-comparison methods, Single Stimulus Continuous Quality
Evaluation (SSCQE) and Simultaneous Double Stimulus for Continuous
Evaluation (SDSCE) method.

• ITU-T P.910 (04/2008) [5] Subjective video quality assessment methods for
multimedia applications: Describes non-interactive subjective assessment
methods for evaluating the one-way overall video quality for multimedia
applications such as videoconferencing, storage and retrieval applications,
tele-medical applications, etc.

The three classes of subjective assessment methologies: single stimulus
methods, comparison methods and double stimulus methods, recommended in
these standards are briefly summarized below.

• Double Stimulus Continuous Quality Scale (DSCQS): The reference and the
distorted image (or sequence) are presented twice to the viewer alternating
between reference and distorted versions, see Figure 1.1(a). The viewers
should rank the perceived quality in a continuous scale of 0-100 (being 0bad
and 100 excellent). Multiple pairs of reference and distorted images (or
sequences) are shown to the viewers but they are not told which one is the
reference or the distorted one. Analysis is based on the difference in rating for
each pair, which is often calculated from an equivalent numerical scale from 0
to 100. In the case of DSCQS, the Difference Mean Opinion Score (DMOS)
could be used instead of MOS. It consists of the mean of differential subjective
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scores. For each viewer and image (or sequence) the raw scores arefirst
converted to difference scores, that is, the difference between the given score
to the reference and distorted version. These scores are further normalized as
explained in [6] to obtain Zscores [7] that are finally rescaled to the 0-100
range to obtain the DMOS score for that image or sequence, where 0
represents the best quality value (no difference between reference and
distorted image) .

• Double Stimulus Impairment Scale (DSIS). Unlike DSCQS, the viewers know
which one is the reference image (or sequence), that is presented first,followed
by the distorted one. In DSIS variant II this presentation is repeated once. The
viewers rate the images/sequences in the five-level scale presented in Figure
1.1. This method is named as Degradation Category Rating (DCR) in the ITU-
T P.910.

• Single Stimulus Continuous Quality Evaluation (SSCQE). Here the viewers
are only shown the distorted image/sequence, but for a longer duration than in
the previous methods, typically 20-30 minutes, and rate simultaneously while
watching the sequence the perceived quality using a slider in the same scale
that DSCQS.

• Absolute Category Rating (ACR). Like SSCQE is a single stimulus with only
the distorted version showed to the viewers. They provide a single quality rate
for the overall sequence using the five-level scale from Fig. 1.1(a).

• Pair Comparison (PC). This method pairs the references and distorted versions
in any possible combination of compression degree and or used encoder.The
pair is shown twice in rapid succession and at the end the viewer should choose
which version of the pair has better quality.

These methods generally have different applications. DSCQS is is the
preferred method when the quality of test and reference sequence aresimilar,
because it is quite sensitive to small differences in quality. The DSIS method is
better suited for evaluating clearly visible impairments such as artifacts caused
by transmission errors, for example. As for all subjective tasks, different results
can be achieved depending on how the video or image content is presentedto the
viewers and which method is used. Inclusive for the same content the way and
the order in which it is presented to the viewers can bias the results in a desired
direction.

In [8, 9, 10] authors review and compare some of these standardized testing
methodologies, emphasizing the benefits and problems of each method. They
analyzed the results of SSCQE and DSCQS methods, concluding that high
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correlated results between these methods can be achieved if the SSCQE duration
of the sequences is reduced to 9 to 15 seconds. Their experiments conclude that
the participating viewers considered at most the last 9 to 15 seconds of video
when forming their quality estimate. This is not to say that long sequences are
completely without other merits. Nonetheless, when long video sequences are
used in SSCQE tests, test designers should not necessarily expect a panel of
viewers to rate the video inherently differently than if shorter sequences are used.
The advantages of using SSCQE as a substitute of DSCQS for video
comparisons, would include faster testing (or more clips rated for the same
amount of viewing time spent) and less viewer fatigue.

Another comparison of the DSCQS and DSIS II scales can be found in
[11, 10] where authors study the effects of context in the different methods. One
type of contextual effects is created when there are fluctuations in the subjective
rating of sequences based on the types and amount of impairments presented in
the preceding sequence in the test. For example, a sequence with moderate
impairment that follows a set of sequences with weak impairment may be judged
lower in quality than if it follows sequences with strong impairment. A common
method used to try and counterbalance this type of contextual effect is the
randomization of the test trial presentation order. Using it, they finally conclude
that the DSCQS method has reduced contextual effects, being the best method to
use in order to minimize contextual effects for subjective picture quality
assessment.

These aforementioned studies reveal that the selection of the proper method
for presenting the references and the distorted versions of our images or sequences
could result in varying results. Besides, we have to take into account the time
needed to prepare the test images, the distorted versions, the ordering ofthe test
sequences, the viewing conditions and to be able to enroll sufficient viewers to
have statistically representative results.

Traditionally, in order to avoid the need to perform such time consuming
subjective tests, the scientific community mostly has used the Mean Square Error
(MSE) and the Peak to Noise Ratio (PSNR) to assess quality and compare the
performance of different and competing encoding proposals. This is because
MSE and consequently PSNR has many attractive features [12], it is simple to
calculate and parameter free, mathematically easy to deal for optimization
purposes, is the natural way to define the energy of the error signal and finally is
the most commonly used metric. Technically, MSE measures image difference,
whereas PSNR measures image fidelity, i.e. how closely an image resembles a
reference image, usually the uncorrupted original. Due to the popularity ofthese
metrics, most of the results from previous comparison works are expressed with
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them, because using it saves time and effort while comparing, and as a side
effect, it further propagates the use of MSE and PSNR.

(a) Original

(b) PSNR=26.55 (c) PSNR=26.55

(d) PSNR=26.60 (e) PSNR=26.55

Figure 1.2: Einstein original image (a) and different distorted versions of it. The same PSNR but
different perceptual quality. b) Mean Shifted Image, c) Contrast Stretched Image, d) Blurred Image
and e) JPEG Compressed Image

In relation with human perception MSE and PSNR are widely criticized
[13, 10, 14, 15]. PSNR do not always agree with the evaluations of the Human
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Visual System (HVS), therefore when it is used to predict, or correlate results,
with human perception of fidelity and quality, it seams not to be the best choice.
The human eye, for example, does not observe small changes of intensity
between individual pixels, but is sensitive to the changes in the average value and
contrast in larger regions. Another deficiency of these distortion functions is that
they measure only local, pixel-by-pixel differences, and do not consider global
artifacts, such as blockiness, blurring, jaggedness of the edges, ringing or any
other type of structural degradation of the image.

The visibility of distortions depends on the image background, a property
known as masking (see section 1.3.8). Distortions are often much more
disturbing in relatively smooth areas of an image than in texture regions with a
lot of activity, an effect not taken into account by pixel based metrics. Therefore
the perceived quality of images with the same PSNR can actually be very
different. An illustrative example is shown in Figure 1.2 where an original is
altered by different types of distortions. Note that the PSNR values, relative to
the original image 1.2(a) of several distorted images are nearly identical, even
though the images present dramatically and obvious different visual quality. In
[12] the problem with MSE is deeply studied.

But they, are still the most widely used metrics in comparisons of encoder
performance. This, as we will see later can produce erroneous conclusions about
the goodness of a specific encoding proposal. Nevertheless, some authors [16]
argue that in scenarios with fixed content distorted by typical compressionand
channel artifacts, PSNR predicts the perceived subjective quality nearly as well as
more complex quality models representing the state-of-the-art.

The aim of research in the field of image and video objective quality
assessment, is to design quality metrics that can automatically predict and rank
the quality of an image or video sequence giving a quality value that is high
correlated to the subjective MOS or DMOS value given by human observers.
This metrics are valuable because they provide image and video encoder
designers, and standards organizations, with means for making meaningful
quality evaluations without convening viewer panels and provides big saving in
time and effort.

So, one of the objective in this work is to find, among the most important
image objective quality assessment metrics, one that exhibits a good behaviorfor
a large set of image (or intra-mode encoded video) distortions providing measures
as much as close to the ones perceived by human observers and fast enough for
their practical use.

In the literature, there is a consensus in a primer classification of objective
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quality metrics [17, 18, 10] attending to the availability of original non-distorted
info (the reference) to measure the quality degradation of an available distorted
version:

• Full Reference (FR) metrics perform the distortion measure with a full access
to the original version which it is taken as a perfect reference.

• No Reference (NR) metrics have no access to reference. So, they have to
perform the distortion estimation only from the distorted version. In general
they have lower complexity but are less accurate than FR metrics and are
designed for a limited set of distortions.

• Reduced Reference (RR) metrics work with some information about the refer-
ence (similar to a perceptual hash algorithm). A RR metric defines what infor-
mation have to be extracted form the reference, so it can be compared with the
same information extracted from the distorted version. This reference sidein-
formation is the only information available to the metric to perform the quality
assessment.

Figure 1.3: Artifacts: Blockiness

The most widely used FR objective video quality metrics by the scientific
community, as mentioned before, are MSE and PSNR. In the last years, new
objective image and video quality metrics have been proposed, mostly for FR/RR
quality assessment . They emulate human perception of image/video quality
since they produce results which are very similar to those obtained from
subjective methods.
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Most of these proposals were tested in the different phases carried out by the
Video Quality Experts Group (VQEG) which was formed to develop, validate
and standardize new objective measurement methods for video quality. The
models that the VQEG forum validates result in International
Telecommunication Union (ITU) recommendations and standards for objective
quality models for both television and multimedia applications [19].
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1.2 Principal coding artifacts and visual distortions

Figure 1.4: Artifacts: Blur

Most of the image or video compression algorithms used in the coding
standards relay on the use of the DCT or the Wavelet transform. In such coding
schemes the quality of the reconstructed version of the scene is deteriorated by
the loss of information and by the introduction of coding artifacts. The loss of
information is produced in the quantization step of the coding chain, while other
artifacts can be introduced in other steps of the chain.

Figure 1.5: Artifacts: DCT basis image

Evaluation and classification of image coding artifacts [20] and video coding
artifacts [21] is important in order to evaluate the performance of coding software
and hardware products proliferating in the telecommunications, entertainment,
multimedia and consumer electronics markets. A comprehensive classification
will also assist in the design of more effective adaptive quantization algorithms
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Figure 1.6: Artifacts: Ringing on DWT

and coding mechanisms in order to improve image and video codec performance.
But, due to the complexity of the HVS, the perceived distortion is not directly
proportional to the absolute quantization error [21].

In addition, our perceptual response to visual distortion, varies depending not
only where quantization errors occur, but also how they coincide with structural
image elements [22]. So, it is not possible to predict the quantization level or the
bit-rate at which a specific artifact appears. And due to the different varieties of
bit-allocation techniques that have been proposed, which may, or may not, exploit
the masking effects of the HVS, this prediction is even more complicated.

Nevertheless, many efforts have been done to perform adaptive quantization to
reduce artifacts produced by encoders that use specific transforms,like DCT [23,
24, 25, 26] and DWT [27, 28, 29]. In addition some specific artifacts produced by
the DCT transform, like blocking, are eliminated by the use of DWT techinques
[30].
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The classification of coding artifacts is important too, in the design of filtering
and for the search of objective psychovisual-based quality metrics.

Noise and artifact are terms used to describe speckles, spikes, missing data,
and other marks, impairments, defects and abnormalities in image data created
during the acquisition, transmission, and processing of image data.

The following, summarizes the most common noise and artifacts produced
mainly in the processing of image data, describing only, how they manifest and
possibles causes and relationships. Some of these effects arise only in block-based
DCT schemes, others only in DWT schemes where the transform is applied to the
whole image/frame, and finally some of them arise in block-based DWT schemes
like JPEG2000. For example, in the LTW encoder [31], the transform is applied
to the entire image, therefore none of the block-related artifacts occur. Instead,
blurring and ringing are the most prominent distortions in these type of encoders.
Figures 1.3 to 1.8 show some of these artifacts.

• The blocking effect or blockiness (figure 1.3), refers to the appearance of a
block pattern in the reconstructed sequence. It is due to the independent
quantization of individual blocks (usually of 8x8, 16x16, etc.. pixels in size) in
block-based DCT coding schemes. It is more visible in low-detail regions
when coarse quantization is applied to adjacent blocks, producing
discontinuities at the boundaries of that blocks. The blocking effect is often
the most prominent visual distortion in a compressed sequence due to the
regularity and extent of the pattern. The false edges of the blocking effect are
perceived as abnormal high frequency components in the spectrum of the
image.

• Blurring manifests itself as a loss of spatial detail and a reduction of edge
sharpness in regions with moderate and high detail (figure 1.4). Different types
of blurring may occur. Motion blur due to the relative motion between
elements in the scene, out focus blur (defocused camera or lens aberrations)
and blur can be also introduced when compressing the image. It is due to
filtering and the suppression of the high-frequency coefficients by coarse
quantization i.e. an image appears blurred when its high spatial frequency in
the spectrum is attenuated. Blurring means that the received image is smoother
than the original.

• Color bleeding is the smearing of the color between areas of strongly differing
chrominance, typically near edges over flat backgrounds. It results from the
suppression of high-frequency coefficients of the chroma components.

• Each of the DCT basis images have a distinctive regular horizontally or
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vertically oriented pattern which make them visually conspicuous (figure 1.5).
The DCT basis image effect is prominent when a single DCT coefficient is
dominant in a block. The effect is caused by coarse quantization of the AC
DCT coefficients in areas of high spatial activity within a frame, resulting in
the nullification of the low-magnitude DCT coefficients which are within the
quantization dead-zone.

• Slanted lines often exhibit the staircase effect. It is due to the fact that DCT
basis images are best suited to the representation of horizontal and vertical
lines, whereas lines with other orientations require higher-frequency DCT
coefficients for accurate reconstruction. The typically strong quantization of
these coefficients causes slanted lines to appear jagged.

• Ringing artifacts manifest themselves in the form of ripples or oscillations
around high-contrast edges in compressed images. They can range from
imperceptible to very annoying, depending on the data source, target bit rate,
or underlying compression scheme (figure 1.6). Ringing is fundamentally
associated with Gibbs’ phenomenon and is thus most evident along
high-contrast edges in otherwise smooth areas. It is a direct result of improper
quantization of high-frequency, leading to irregularities in the reconstruction.
Ringing occurs with both luminance and chroma components. Since the
high-frequency components play a significant role in the representation of an
edge, coarse quantization in this frequency range (i.e., truncation of the
high-frequency transform coefficients) consequently results in apparent
irregularities around edges in the spatial domain, which are usually referred to
as ringing artifacts.

• False edges are a consequence of the transfer of block-boundary discontinuities
due to the blocking effect from reference frames into the predicted frame by
motion compensation.

• Jagged motion can be due to poor performance of the motion estimation.
Block-based motion estimation works best when the movement of all pixels in
a macroblock is identical. When the residual error of motion prediction is
large, it is coarsely quantized.

• Motion estimation is often conducted with the luminance component only, yet
the same motion vector is used for the chroma components. This can result in
chrominance mismatch for a macroblock.

• Mosquito noise is a temporal artifact seen mainly in smoothly textured regions
as luminance/chrominance fluctuations around high-contrast edges or moving
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objects. It is a consequence of the varied coding of the same area of a scene in
consecutive frames of a sequence.

• Flickering appears when a scene has high texture content. Texture blocks are
compressed with varying quantization factors over time, which results in a
visible flickering effect while watching the sequence.

• Aliasing can be noticed when the content of the scene is above the Nyquist rate,
either spatially or temporally.

• Masking is the reduction in the visibility of one component (the target) due to
the presence of another (the masker). There are two kind of masking effects,
luminance masking (light adaptation) and texture masking, which occurs when
masker and target have similar frequencies and orientations.

• Jitter, in video sequences this distortion occurs due to abrupt variations resulting
from asynchronous acquisition of video frames

• Jerkiness, refers to the perception of still images in a video sequence resulting
from too low frame rates.

• Frame-loss is the loss of entire frames, normally frame-loss is produced in burst
of different duration, i.e. number of frames. When frame-loss occurs, the video
codec use to proceed by repeating the last correctly received frame (frame-
freeze effect) or by setting a black frame. Frame-freeze is considered to be
detected when its duration exceeds a certain threshold.

Figure 1.7: Artifacts: To types of reconstructed frames after packetlosses

Another type of distortions are due to transmission errors of the bitstream
over a noisy channel. When compressed video is transmitted over a
packet-switched network, wired or wireless, some transport protocol like ATM
(Asynchronous Transfer Mode) or the TCP/IP (Transfer Control Protocol/
Internet Protocol) ensures the delivery of the bitstream. Normally the bitstream is
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packetized, i.e. splitted in packets, whose headers contain sequencing and timing
information. When the final application requires the bitstream in real-time for
decoding and display the multimedia content, some common network conditions
can produce the loss of some packets, which finally result in visual artifacts in
the reconstructed sequence (figure 1.7).

In addition to the loss of packets, bit-errors can occur inside packets which
are not lost, producing several type of noise effects in the reconstructed image
or frame (figure 1.8), that are different depending on, the codec being use and
many other factors as bits allocation in the bitstream, amount of bits (burst error),
importance of the bits for the coding scheme, etc.

Packets can be lost or delayed, so that they are not received in time to be
decoded when requested. To the decoder both alternatives have the same effect,
the packet is lost and the bitstream can not be completely decoded. If some
packets need dependent information contained in lost packet, for example,
information that is differentially predicted, then the lost of a single packet
corrupts the rest of the packets until the reception of the first non-dependent
packet.

Figure 1.8: Artifacts: Bit Errors on DWT

For example, an MPEG macroblock that is damaged through the loss of
packets corrupts all following macroblocks until an end of slice is encountered,
where the decoder can resynchronize. In this example two types of errors are
produced by the loss of packets, a spatial loss propagation and a temporal loss
propagation. The spatial loss propagation is due to the fact that the DC



1.2. Principal coding artifacts and visual distortions 17

coefficient of a macroblock is differentially predicted between macroblocks. The
temporal loss propagation arise when the lost information is needed by motion
estimation.

The visual effect of such loss depend on the ability of the decoder to deal with
corrupted bitstreams. Some decoders include clever concealment techniques, such
as early synchronization and spatial or temporal interpolation in order to minimize
these effects.
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1.3 Brief Overview of HVS

Some brief introduction to the Human Visual System must be done in order to
understand how the Objective Quality Assessment Metrics are build. Only the
most important characteristics of the HVS that are implemented in these metrics
are here briefly reviewed [17, 32, 33, 18, 10].

1.3.1 The Visual Pathway

The first contact of light wiht the eye is at the cornea, the main refractivesurface
of the eye, see Figure 1.9 from [18], then enters the eye through the pupil, in the
center of the iris. The pupil diameter varies from 3 to 7 mm, and changes it size
up to a factor of 5, based on the prevailing light level and other influencesof the
nervous system.

Figure 1.9: Schematic diagram of the human visual system

The light goes through the lens, that changes it shape with accommodation to
focus the image on the back of the eye, projecting an inverted image of the visual
field. After the lens, light passes through the gelatinous vitreous humor in the
main body of the eye.

At the back of the eye is the retina, an extension of the central nervous system,
where the light sensitive photoreceptors transduce the electromagnetic energy of
light into the electro-chemical signals used by the nervous system. It consists of
five main neural cell types organized into cellular layers and synaptic layers.

The photoreceptors, that initiate the neural response to light, are located on the
outer part of the retina. There are two classes of photoreceptors, rods and cones.
The rods are responsible for vision at very low light levels (scotopic) and do not
normally contribute to color vision. The cones, which operate at higher lightlevels
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(photopic), mediate color vision and the seeing of fine spatial detail, so they are
responsible for vision in normal light conditions. There are three different types
of cones, corresponding to three different light wavelengths. The L-cones, M-
cones and S-cones (corresponding to the Long, Medium and Short wavelengths)
split the image projected onto the retina into three visual streams. These visual
streams can be thought of as the Red, Green and Blue color components ofthe
visual stimulus, though the approximation is crude.

The photoreceptors are non uniformly distributed over the retina. The point
on the retina that lies on the visual axis is called the fovea and it has the highest
density of cone cells. This density falls off rapidly with distance from the fovea.
The distribution of the ganglion cells, the neurons that carry the electrical signal
from the eye to the brain through the optic nerve, is also highly non-uniform,and
drops off even faster than the density of the cone receptors. The net effect is that
the HVS cannot perceive the entire visual stimulus at uniform resolution.

The signals from the photoreceptors are processed via of retinal connections
and exit the eye by way of the optic nerve. The axons of the ganglion cells,in
the inner cellular layer of the retina, are gathered together and exit the eyeat the
optic disc forming the optic nerve that projects to the Lateral Geniculate Nucleus
(LGN), a part of the thalamus in the midbrain. These synaptic connections to
neurons, projects to the primary visual cortex which contains neurons tuned to
various aspects of the incoming streams, such as spatial and temporal frequencies,
orientations and directions of motion. These areas in the visual cortex respond to
visual stimuli and processes of various modes of vision such as form, location,
motion, color, etc.

The neurons in the cortex have receptive fields that are modeled as
two-dimensional Gabor functions, which are linear filters that typically is used
for edge detection. The whole set of these neurons are modeled as an
octave-band Gabor filter bank [34] where the spatial frequency spectrum (in
polar representation) is sampled at octave intervals in the radial frequency
dimension and uniform intervals in the orientation dimension. The output of
these neurons saturates as the input contrast increases. The tasks ofthese neurons
in the cortex, is typically emulated in some quality assessment metrics and
perceptually driven encoders, with the inclusion of models of spatial frequency
and orientation selectivity.

1.3.2 Foveal and Peripheral Vision

As stated before, the retinal image is a distorted version of the input visual field. A
natural noticeable distortion is blurring, produced by imperfections of the optics of
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the eye and natural variations of light produced at each step in the visualpathway.

Figure 1.10: Point spread function of the human eye as function of visual angle

To quantify and model the amount of blurring of a HVS a Point Spread
Function (PSF) or a Line Spread Function (LSF) is used. Its Fourier transform is
the Modulation Transfer Function (MTF) of the eye for this stimulus. The
amount of spreading or blurring of a stimulus is a measure of the quality of an
optic system. The amount of blurring depends on the pupil size being higheras
the pupil increases it size due to lower ambient light intensities.

This variation is modeled by a a simple formula (Equation 1.1 [17]) to
approximate the foveal point spread function of the human eye with good focus
and a pupil diameter of 3 mm. [35], beingα minutes of arc. This PSF, presented
in Figure 1.10, also changes with wavelength. By accommodation, the eye can
place any wavelength into good focus, but it is impossible to focus all
wavelengths simultaneously.

PS F(α) = 0.952e−2.59|α|1.36
+ 0.048e−2.43|α|1.74

(1.1)

As commented in section 1.3.1 the densities of the cone cells and the ganglion
cells in the retina is not uniform. The number of photoreceptors have a peakat the
fovea and decreases with distance from it. Cones are concentrated in thefovea, the
region of highest visual acuity, which covers approximately two degreesof visual
angle on the retina. When a human observer fixates at a point of the visualscene,
this point is located at the fovea being sampled with the highest spatial resolution.
The surrounding points of the scene are progressively processed with lower spatial
resolutions. The high-resolution vision due to fixation by the observer ontoa
region is called foveal vision, while the progressively lower resolution vision is
called peripheral vision.
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Regarding the visual spatial acuity of the fovea, the photoreceptors arepacked
tighgly in triangular arrangment with a mean center-to-center spacing of 32 arc
min. [36] This corresponds to a sampling rate of approximately 120 samples
per optical degree or a Nyquist frequency of around 60 cpd (cyclesper optical
degree). Visual spatial acuity is therefore considered to be approximately 60 cpd
although under special conditions, for example, peripheral vision and large pupil
sizes higher spatial frequencies can be either directly resolved.

Image quality assessment models [37, 38, 39] can include foveal vision in its
implementation. These models also introduce vision modeling taking into account
the non-uniform distribution off cones in the retina, modeling the image with less
resolution as the distance from the region of interest (foveated part of the image)
increases. Foveal vision models can resample the image with the same density of
the receptors in the fovea in order to provide a better approximation of the HVS.

Most models neglect eccentricity and off-axis effects and concentrate their
modeling efforts on the properties of the fovea. This is usually justified with the
fact that when the eyes bring into the fovea part of the image, this part is sampled
at highest resolution, being any part of the image processed in the same way. As
the the optical and retinal properties are relatively uniform across the fovea, using
the same properties for the whole image significantly simplifies modeling.

1.3.3 Contrast Sensitivity

As commented in section 1.3.5 the HVS can perceive small differences in
luminance. However the minimal difference that still can be perceived, depends
on the background luminance. The dependence to the background luminance
that the HVS has while detecting differences in the luminance is called Contrast
Sensitivity. That is, sensitivity to intensity differences, is dependent on the local
luminance in regions of the image [40]. A basic model for this dependence is the
Weber-Fechner law. It states that, sensitivity to luminance differences in a
stimulus is proportional to the mean luminance of the stimulus. Mathematically,
Weber contrast can be expressed as Equation 1.2

CW =
∆L
L

(1.2)

The Weber-Fechner law is not fulfilled for all background luminance levels.
It holds for luminance levels above approximately 10cd/m2 [41], below this level
the contrast threshold increases as luminance decreases, i.e. there is less
sensitivity to contrast below this level. Evidently, the Weber-Fechner law is only
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an approximation of the actual sensory perception, but contrast measures based
on this concept are widely used in vision science.

Contrast is the difference in the luminance level of adjacent parts of an image
or visual field. That is, contrast is the difference in luminance or color that makes
an object distinguishable. HVS is more sensitive to luminance changes (contrast)
than to absolute luminance, so we can perceive objects regardless of the changes in
illumination (above 10cd/m2 as Weber-Fechner law states) as long as the contrast
is high enough.

Figure 1.11: Three sine wave gratings with the same spatial frequency but with descending contrast
from left to right

If contrast is too low we can not distinguish an object from the background. In
this situation some objects in the scene turn into invisible objects. These objects
are said to be below the contrast threshold.

The sensitivity is the inverse of the contrast threshold, i.e.
S ensitivity = 1/threshold. Therefore, the smaller the contrast we need to
perceive an object in the scene is, the higher is our sensitivity. And the opposite,
for low sensitivity we need higher contrast to perceive differences. Under
optimal conditions, the contrast threshold can be less than 1%.

Suppose a scene where the contrast of an object with its background is
descending, then at just the point where the object becomes invisible we could
record the value of the difference in luminance between the object the
background, this value is our contrast threshold. Its inverse is our contrast
sensitivity. For example, if contrast threshold is 0.1 then sensitivity is
1/0.1 = 10, if threshold is 0.01 then sensitivity is 100, and so on.

In Figure 1.11 we can see three gratings, these gratings are called sinusoidal
gratings or sine wave gratings, because they change gradually in luminance over
space (horizontal axis). At the bottom of each grating a sine wave represents the
luminance variability in the horizontal axis.

The contrast of periodic (often sinusoidal) stimuli with varying frequencies is
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defined by the Michelson contrast. The Michelson definition of contrast is infact
(LMAX − LMIN)/(LMAX + LMIN) whereLMAX and LMIN stands for Max
Luminance and Min Luminance respectively. If the sine wave of the rightmost
grating in Figure 1.11 were just a horizontal line there would be no contrastat all,
then, the so-called grating would just be a homogeneous gray,LMAX would be
the same asLMIN and contrast would be zero because (LMAX−LMIN) would be
zero. If, on the other hand, the black bars were very black and the whitebars were
very white, (LMAX− LMIN)/(LMAX+ LMIN) might be (1000− 1)/(1000+ 1),
so the maximum contrast you can ever have is 1.0

But, if in the previous scene are more than one object and these objects are
quite different in size, shape and texture, then the point in which each object
becomes invisible is different. This is due to the fact that the human perception
off contrast not only depends on the difference of luminance but also on the
spatial frequency. So, the contrast threshold varies with the spatial frequency.

Figure 1.12: Which of these three gratings appears highest in contrastand which appears lowest in
contrast?

In [42] we can find a very clear explanation of contrast sensitivity. To illustrate
this we can see figure 1.12 from [42] where three gratings are presented. Most
people would rank them in the order shown, with the leftmost grating being the
one with lower contrast. But this is wrong because all three gratings have precisely
the same physical contrast.

Suppose we use a lens to cast an image of a target grating on a white paper.
This target grating has a specific physical contrast that we call “targetcontrast”.
Then, using a photometer we determine the intensity of the light and dark portions
in the image and, hence, the contrast of the image of the grating produced bythe
lens, the “image measured contrast”. We repeat these measurements for different
spatial frequencies always with gratings of the same “target contrast”.

If we graph the results, being the horizontal axis the spatial frequency of the
grating, and the vertical axis the “image measured contrast” as percentageof the
“target contrast”, then we get the a transfer function of how contrast istransferred
through the lens, see Figure 1.13. In this figure two curves appear, onefor a clean
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Figure 1.13: Two transfer functions for a lens. How contrast in the image formed by the lens is
related to contrast in the object.

lens and another corresponding to a buttered lens, i.e. smeared with a buttery
finger.

For the clean lens curve, up to a specific spatial frequency the contrastin
the image is identical to that of the target, but for higher frequencies the lens
reproduces the target less faithfully. The frequency at which the contrast falls
to zero is called the cutoff frequency, when the frequency exceeds this value the
image and the target (if a perfect lens) will no longer contain any contrast.

The curve for the buttered lens, has a lower cutoff frequency, degrading the
contrast of the target more rapidly than the clean lens. But at very low frequencies
the smear makes little difference in the performance of the lens. This means that a
high quality lens reproduce better fine and coarse spatial detail whereasa low-
quality lens only reproduce well low frequencies. Think about when youare
wearing smeared glasses.

Natural scenes are not as simple as gratings and that images are composedof
many different spatial frequencies, sine waves in any orientation. We can treat
the scene as a sum of a series of simple sinusoidal components, by using Fourier
analysis, we can evaluate how the lens reproduce each of those components. So
we can first determine the transfer function of the lens (supose the buttered one)
and second analyze the visual scene into its spatial frequency components.
Finally, with this information we can conclude which spatial frequency
components will be preserved by the lens in the image and which will not.

Suppose now that the lens is our Human Visual System, which frequencies
will we perceive an which one not? The problem here is that is not as easyas in
the case of the lens, to determine the transfer function of our HVS.
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1.3.4 The Contrast Sensitivity Function

With the HVS we can not reproduce the procedure employed with the lens in
order to measure the frequency components of the gratings that are preserved in
the image, because the image is formed inside the eye. Moreover, this image
would give information of only a part of the complete transfer function of the
HVS, because other neural and cognitive components of it, further processes that
image.

Figure 1.14: Contrast sensitivity function shape.

As we are interested in visual perception we must be concerned with the
perceptual transfer function which depends on the optical transfer function and
the neural and cognitive transfer functions. By measuring contrast thresholds for
different spatial frequency gratings, we can derive a curve that describes the
entire visual system’s sensitivity to contrast. We call this curve the Contrast
Sensitivity Function (CSF), to distinguish it from the transfer function of a lens.

Figure 1.14 shows the CSF for a human adult. The horizontal axis specifiesthe
spatial frequency plotted as the number of cycles within a degree of visualangle.
The vertical axes plot the minimum contrast required to see the grating whereleft
axis show units of contrast and right axis inverse of this contrast value (defined
as sensitivity). This curve defines the window of visibility, that is, underneath the
curve represents combinations of contrast and spatial frequency thatcan be seen,
while above represents combinations that can not be seen.

The CSF curve in figure 1.14 differs from the lens transfer functions of
Figure 1.13 at low frequencies because the HVS is less sensitive to very low
spatial frequencies than it is to intermediate ones. Objects of a visual scene
which have most of their spatial frequency information around the optimum
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Figure 1.15: Campbell-Robson contrast sensitivity chart

point on the CSF will be clearly visible even when they are in low contrast. But
if these objects have very low spatial frequencies (very large objects) or only
very high spatial frequencies (very small objects or very fine details of them)
they will be less visible and their contrast should be higher in order to be seen.
This explains why the gratins in figure 1.12 appear different in contrast: their
apparent contrast varies with your sensitivity to different spatial frequencies.

Figure 1.15, the so-called Campbell-Robson chart [43] demonstrates the
shape of the spatial CSF for sinusoidal stimuli in a very intuitive manner. The
luminance of pixels is modulated sinusoidally along the horizontal dimension.
The frequency of modulation increases exponentially from left to right, while the
contrast decreases exponentially from 100% to about 0.5% from bottom to top.
The minimum and maximum luminance remain constant along a given horizontal
line through the image. The location of its peak depends on the viewing distance.

Campbell [44] suggested that the CSF does not reflect the sensitivity of a
single mechanism, but the combined activity of sets of neurons, each capable of
responding to targets over only a restricted range of spatial frequencies. This
independent mechanisms, called ’filters’, ’detectors’ or ’channels’ are responsive
for detecting luminance variations that occur at a particular spatial scale
(frequency). Some respond to the coarse variations and others to finerdetails.
So, the CSF reflects the envelope of sensitivities of multiple filters see figure
1.16. Consequently the HVS uses the spatial frequency filters to perform atype
of Fourier analysis of the retinal image.
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Figure 1.16: Multiple filters CSF model.

1.3.5 CSF and light conditions

The HVS operates over a wide range of light intensity values. The scotopicand
photopic vision cover actually 12 orders of magnitude, varying from the
detection of a single photon to extremely bright day-light conditions. To reach
this dynamic range more than a single adaptation process is involved. The first
adaptation mechanism is located in the pupil, which resizing mechanism controls
the amount of light entering the eye. Then, a more powerful regulatory process
of light adaptation is hold in the photoreceptors and other retinal cells adjusting
the gain of post-receptor neurons in the retina. The retina encodes the contrast of
the visual stimulus instead of coding absolute light intensities. There are two
different adaptation processes:

• Light adaptation. This adaptation happens very quickly. Sensitivity changes
from dark light to bright light conditions. A decrease of the chemical
concentration in the photoreceptors is the cause.

• Dark adaptation. Adaptation from bright light into darkness. In this case the
chemical concentrations increases, but this process is very slow in comparison
with light adaptation, it can take up to an hour until the chemical concentrations
reaches its final state.
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Figure 1.17: Contrast ratio: Weber fraction

The response of the eye to changes in the intensity of illumination is nonlinear.
If we consider a patch of light intensity surrounded by a background intensity I ,
we can define as Just Noticeable Difference (JND) as the smallest increment∆I
in luminance perceived by our HVS, [45] states that the sensitivity of humaneyes
to discriminate these increments depends not only on the difference itself but also
on the level of intensity. Over a wide range of intensities the Weber fraction∆I

I
is nearly constant at a value of about 0.02, but this result does not holdfor very
low or very high light intensities as shown in figure 1.17 whereI+∆I

I represents
the contrast ratio. So, the Contrast Sensitivity is also affected by the luminance
level.

Figure 1.18: CSF under different luminance conditions

Figure 1.18 depicts how the CSF varies with light conditions showing three
CSF curves, the photopic curve (datytime), the mesopic curve (twilight) and
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scotopic curve (dim light). As the level of light decreases from daylight to
twilight, visual sensitivity drops primarily at high spatial frequencies, that iswhy
is difficult to read small letters (small details) in twilight, and lower frequencies
are little affected. When light drops further, sensitivity decreases even at low
frequencies.

1.3.6 Chromatic CSF

Contrast sensitivity to chromatic spatial variations has also been studied [46]
using harmonic stimuli, measuring red-green and blue-yellow gratings. Figure
1.19 from [10] shows the chromatic CSF curves in addition to luminance CSF
curve. The color CSFs are characterized as a low-pass filter with high
frequencies cut-off at much lower frequencies than the cut-off for luminance
curve. That studies reveals that the acuity of the blue-yellow channel is limited
by the distribution of the S-cones in the retina, but the red-green channelis
limited by subsequent neural processing.

Figure 1.19: Contrast Sensitivity Functions of chromatic and luminance components

The sharpness of an image is judged based on the sharpness of the luminance
information since the visual system is not able of solve high-frequency chromatic
information . This fact has been used in the compression and transmission ofcolor
images since high frequency chromatic information can be removed without a loss
in perceived image quality [46, 10]. The full range of colors is perceived only at
low frequencies [47].
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1.3.7 Temporal CSF

The human contrast sensitivity depends on the color, the spatial and also on the
temporal frequency of the stimuli. Similar as the spatial CSF, the temporal CSF
also has a low-pass behavior. The interaction between spatial and temporal
frequencies are commonly used in vision models for video [48].

The spatio-temporal CSF approximations [47] are shown in figure 1.20.
Achromatic spatio-temporal contrast sensitivity is higher than chromatic
sensitivity, especially for medium-high spatio-temporal frequencies. In the
achromatic chart of figure 1.20 we can see that for low spatio-temporal
frequencies our sensitivity decreases whereas chromatic sensitivity does not. As
stated before, the full range of colors are perceived at low frequencies, spatial
and temporal frequencies as shown in the chromatic chart of figure 1.20.At
higher frequencies sensitivity to blue-yellow frequencies declines firstand at
even higher frequencies sensitivity to red-green stimuli declines too and
perception becomes achromatic [47].

Figure 1.20: Approximations of the achromatic CSF (left) and the Chromatic CSF (right)

In has been some controversial in the literature about the space-time
separability of the spatio-temporal CSF. From a modeling and usability point of
view, separability is a very interesting property in order to process video insuch
a way that takes into account the temporal dimension of the HVS sensitivity to
contrast.

Early studies conclude that the spatio-temporal CSF is not space-time
separable at lower frequencies [49, 50]. Further studies [51, 52] conclude that
spatio-temporal CSF can be approximated by combinations of separable
components in space and time. And again later studies confirm the inseparability
of space-time dimensions in the spatio-temporarl CSF [53].
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1.3.8 Masking

Masking is an important phenomenon in vision as it reflects the relationships and
interactions between different stimuli. It occurs when a stimuli, that is visible by
itself, in the presence of another stimuli becomes invisible.

There is a relationship between both stimuli, the masker and the original
stimuli. Some similar characteristics in both stimuli causes the invisibility of the
original stimuli when the masker is present, normally this interaction occurs
gradually as these related properties change. These properties are thespatial
frequency, the orientation and the phase of the masker relative to the original
stimuli, i.e. the masking effect is maximum when the stimulus and the masker
are closely coupled in terms of orientation, spatial and temporal frequency, and
decreases rapidly as the distance between the signals increase in the spectral
domain.

Sometimes the opposite effect occurs, facilitation, when a stimuli cause the
perception of another stimuli that was not perceived before.

When talking about quality assessment, normally is helpful to think that the
distortions produced by compression, transmission, coding noise or whatever
other artifacts (original stimuli) are masked or facilitated by the image or
sequence being compressed, transmitted or coded, that acts as background.

Spatial masking is strongest when the interacting stimuli have similar
characteristics, i.e. similar frequencies, orientations, colors, etc. But it also
occurs between stimuli of different orientation and between stimuli of different
spatial frequency.

For example, in some regions of the image some noise or compression artifacts
are more visible than in other parts, in that cases the background image is acting
as masker for the artifacts, see figure 1.21 from [47] as example. The noise pattern
in the top part of right image is also present in the bottom part of the same image,
but the image content in this area, rocks and see, mask the noise.

So, it is important to understand which are the properties of both parts, the
image in those regions and the noise or artifact itself, because this knowledge can
lead to adaptive techniques to code, compress or transmit images in different ways
at different regions.

Temporal masking accounts for the elevation of the visibility threshold due to
temporal discontinuities in intensity. For example in transitions from dark to
bright the threshold elevation may last up a few hundred milliseconds after
transition.
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Figure 1.21: The background image is acting as masker of a noise pattern. Left is the original
image. In the right image the noise pattern is applied to the top and to the bottom ofthe image. The
texture in watter and rocks makes difficult to detect the noise pattern.

Pattern adaptation is another type of masking that affect to the contrast sensi-
tivity due to an adjustment of the visual system sensitivity in response to a preva-
lent stimulation pattern [47]. Adaptation of a certain spatial frequency can lead to
noticeable decrease of contrast sensitivity around that frequency.

1.3.9 Suprahtreshold Contrast Sensitivity

Up to know, discussion was centered in at threshold sensitivity, i.e. our
sensitivity at threshold level. Our sensitivity at threshold is very dependent on
spatial frequencies, as shown in previous sections, i.e. it depends on the spatial
frequency, and thus the contrast threshold varies, having a maximum sensitivity
(lower contrast threshold) in the range from 2 to 6 cpd, and as said in section
1.3.5 this varies with luminance conditions too.

When we talk about suprathreshold sensitivity we are focusing in the visible
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area of the CSF (see figure 1.14) which is the area of our regular visualconditions.
There, the contrast level is above the threshold level, in other words, contrast is
above the minimum level required for detect the target over the background.

The relationship between the perception of contrast and spatial frequency at
levels above threshold is slightly different than at threshold. The effects
perceived at threshold are qualitatively different from those at suprathreshold
levels, so, models of detection and discrimination levels may not be applicable,
because a “contrast constancy” effect (the apparent contrast matches physical
contrast by an intra-channel response-gain control mechanism of thespatial
frequency channels), is produced in the range from 1 to 10 cpd of spatial
frequency [54, 55, 10].

The “contrast constancy” property [54] suggest that at suprathreshold levels
the contrast ratios specified by the CSF would fail to indicate veridical measures
of perceived contrast; rather, perceived contrast can be predicted based primarily
on physical contrast.

The “contrast cosntancy” property and the effect that natural images, as
masker, produce in the perception of suprathreshold targets was studiedin [56]
where experiments conclude that “contrast constancy” occurs only after an
adaptation process and that natural images decrease the perceived contrast only
of lower-frequency distortions.

In the context of lossy image compression, this “contrast constancy” property
suggest that the contrasts of the distortions could be theoretically proportioned
equally across the frequency spectrum (e.g., by assigning all frequency subbands
equal weights) without affecting the total perceived contrast.

Because compression induced distortions are presented against a natural
image maskers, then, under “contrast constancy” assumption and with the
support of results [56] of authors experiments, it is reasonable to assume that the
post-adaptation might also affect the perceived contrast of suprathreshold
distortions in a similar fashion, and as natural images decrease the perceived
contrast only of lower-frequency distortions, more contrast would be allocated to
these lower-frequency distortions, e.g., by assigning the corresponding subbands
smaller weights (indicating less “visual importance”). Experiments in the context
of lossy image compression using the wavelet transform [57] confirm too that
when distortions are suprathreshold, physical contrast is a better indicator of
perceived contrast than predictions based on the CSF.

Authors in [57] detected also that although “contrast constancy” is observed
too for wavelet subband quantization distortions at suprathreshold levelsin their
unmasked experiments (without natural-images as masker), when using
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natural-images as masker, selective effects on the perceived contrast of
low-frequency distortions are observed. Authors conclude that proportioning the
contrast of the distortions according to the perceived contrast ratios, produce
lower visual image quality that the one obtained by proportioning the contrast
using CSF derived ratios. Authors also provide an explanation to this factbased
on the global precedence mechanism, which sanctions the allocation of less
contrast to lower-frequency distortion in order to preserve the visual integration
of image features across scale-space.

Also in in Part I of the DWT based compression standard, JPEG 2000, the
“contrast constancy” property is not applied and by the way of a visual
progressive weighting factor, greater contrast allocation is given to
higher-frequency distortions.
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1.4 Objective quality assessment metrics

An objective quality assessment metric for images or video sequences, measures
the perceived distortion of the image or the sequences without human intervention
in such a way that results are highly correlate to the human quality ratings for
the image or sequence. It can be use as part of a quality of service monitoring
application to identify changes of quality over time or as part of a rate-distortion
framework that seeks to optimize the quality of compressed images or sequences
by minimizing the perceived distortion.

When comparing the performance of different image and video coding
approaches, improvements of theses approaches or completely new codec
designs, the most common way of doing the comparison between proposals, isin
terms of the Rate/Distortion (R/D) behavior of the compared approaches. When
using R/D comparisons, usually the distortion is measured in terms of PSNR
(Peak Signal-to-Noise Ratio) values, while rates are often measured in bpp(bits
per pixel) when comparing images or Kb/s (Kilobits per second) when
comparing video sequences. However, it is well known that the PSNR metricnot
always capture the distortion perceived by the human being, see section 1.1.

So, a lot efforts were performed to define objective image and video quality
metrics that are able to measure quality distortion closer to the one perceived by
the destination user. In this section, we perform a study of different available
objective image quality metrics in order to evaluate their behavior, taking as
reference the classical PSNR metric. Our purpose is to find an image quality
metric that is able to substitute PSNR for image quality assessment and video
quality assessment in intra mode, and substitute the PSNR as distortion metric in
the R/D comparisons with that metric, obtaining so, a perceptually more accurate
R/D comparison when designing and evaluating image and video codec
proposals.

The main objectives of using QAMs (Quality Assessment Metric) is to avoid
the need to run MOS test and getting the most accurate perceptual quality value of
images or video sequences. An objective QAM is told to have better behaviorthan
other if its output quality values are best correlated with the quality values given
by human observers, i.e. as close as possible to the quality perceived by humans,
when a MOS test is performed. Metrics for assessing how good this correlation is
are reviewed later in this section. So, QAM refers to the metrics and models for
predicting this subjective visual quality scores, MOS or DMOS.

As summarized in section 1.2 many different types of distortions arise when
processing, transmitting, encoding and compressing images or videos. An ideal
objective quality metrics should exhibit a good behavior regardless of what kind
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of distortions are affecting the image. Also it would be desirable that the time
required for giving the quality measure is short enough for a practical use.

In the past years a big effort has been done in the field of QAM. A large
number or metrics can be found in the literature. Some of them have been
designed for a specific kind of distortions, while others are more generalist and
try to perform regardless of the distortion type. Besides, each metric design is
different. We provide a classification of image QAM. Objective evaluation of
picture quality in line with human perception is still difficult
[40, 13, 58, 59, 2, 60, 61] due to the complex, multidisciplinary nature of the
problem, including aspects related to physiology, psychology, vision research
and computer science. Nevertheless, with proper modeling of major underlying
physiological and psychological phenomena, obtaining results from
psychophysical tests and experiments, it is possible to develop better visual
quality metrics to replace non-perceptual criteria as PSNR or MSE.

As mentioned in section 1.1 there is a consensus in a primer classification of
objective quality metrics as Full Reference, No Reference and Reduced
Reference. Most of the recently proposed image and video QAMs are Full
Reference. They emulate and try to substitute the way in that human perception
of image and video quality is use to score the perceived quality, in the sense that
they produce results which are very similar to those obtained from subjective
methods. Most of the FR metrics can also provide a spatial distortion or error
map for each frame or, for video sequences where they provide a time series of
frame level distortion scores.

The time needed to access in FR mode to both sequences is affordable for
compression frameworks or applications that are not executed in real time,but not
for real-time quality monitoring applications. In theses cases NR or RR metrics
are used instead. They detect classes of artifacts or error patterns in images or
sequences, as blocking or blurring, but distortions for which these metrichave
not been designed for, remain invisible. Therefore, although most RR metrics
extract features from the original image that will be compared to the same features
extracted form the distorted version, there are also some RR metrics that works
as FR metrics but with reduced version of the original sequence. This is thecase
of the metric in [62, 63] that uses a low-bandwidth version of the reference for
comparing with the low-bandwidth version of the distorted sequence.

VQEG provide a forum where algorithm developers and industry users meet
to plan and execute validation tests of objective perceptual quality metrics.
VQEG testing includes several subjective databases whose results are tobe
predicted by the objective video quality models under examination. The format
of the source content, the nature of the degradations, the statistical techniques



1.4. Objective quality assessment metrics 37

and almost every aspect related to how to prepare the visual content andhow to
measure the results are parametrized and proposed by the VQEG. As to the
design of each metric provide different output quality scales, the VQEG also
proposes the method to compare those heterogeneous metrics by translating the
results in their own scores into a common scale to make them comparable. Once
a validation test has been completed, VQEG submits a final report to the ITU,
which is ultimately responsible for preparing new standards for objective
perceptual quality measurement.

VQEG has completed three validation tests. The first two tests, called VQEG
Full-Reference Television Phase I (FRTV-I) [58] and Phase II (FRTV-II), covered
quality measurement of standard definition television services using Full
Reference models. The first test, FRTV-I , was completed in 2000. None of the
models tested outperformed the PSNR. Accordingly, the initial standard,
published by ITU-T Study Group 9 as Recommendation J.144 , included only
informative appendices detailing objective models. The second test, FRTV-II,
was completed in 2003 [59]. At the end of this validation effort, the ITU-T
published an updated version of Recommendation J.144 [64] in which four
objective models were included as standardized objective perceptual quality
measurement methods. The third and most recent validation effort was aimed at
evaluating objective perceptual quality models suitable for digital video quality
measurement in multimedia applications. This project, VQEG Multimedia Phase
I (MM-I), was completed in 2008 [65], and ITU-T Study Group 9 has
subsequently published two new standards based on that report: ITU-T
Recommendation J.247 [66] defines four new full-reference objective quality
methods for multimedia, and ITU-T Recommendation J.246 [67] defines one
new reduced-reference objective quality measurement method for multimedia.

1.4.1 Frameworks

QAM can be classified by many factors as, the metric architecture (number and
type of blocks, stages or algorithms used in the metric design), the primary domain
(space or frequency) where they work, the inclusion or not of HVS characteristics
or HVS models in their design, and so on.

We have found in the literature different QAM reviews and different
classifications [32, 47, 10, 68, 69, 15, 70, 71], but without finding a common
consensus on how to fully classify them. Some of these reviews explain with
great detail most of the metrics cited here, so only the main characteristics or
most relevant aspects of the metrics will be exposed here.

We grouped QAM into three different frameworks depending on the way they
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are designed and if its design is driven or not by any of the available HVS models.

• HVS Model Based Framework

• HVS Properties Framework

• Statistics of Natural Images Framework

If the design of one metric is not clearly based on any specific HVS model,
then we move this metric out of the group of HVS modeled metrics. However,
that metric can still use, somehow, one or more of the previously described HVS
characteristics. The third framework is related to the statistic analysis and
properties of the natural scenes.

So, in this section we will briefly describe the main ideas behind the different
frameworks and the most relevant and cited QAM of each one. Normally that
main ideas are translated to functional steps or computational phases that conform
the metric architecture. For each of the frameworks we will explain briefly this
phases or steps.

HVS Model Based Framework

A basic idea of any metric based on a HVS model is that subjective differences
between two images can not be extracted from the given images (original and
distorted one), but from their perceived version. As it is known the HVSproduces
several visual scene information reductions, carried out in different steps. The
way in which this information reduction process of our HVS is modeled, is the
key to obtain a good subjective fidelity metric.

This framework includes the metrics that are clearly based on a HVS model,
i.e. their design follow the stages of any of the available HVS models. We include
here the Error Sensitivity framework (ESF) [2], and also some other RR and NR
metrics that are based on HVS models.

The ”‘Error Sensitivity Framework”’ include mainly FR metrics based on
HVS models, being a common stage in all of them the quantification of the
strength of the errors between the reference and the distorted signals in a
perceptually meaningful way, i.e. using the HVS model. Therefore practicallyall
the metrics in this framework (Error Sensitivity) are FR.

Generally, the emulation of HVS is a bottom-up approach that follows the
first retina processing stages to continue with different models about the visual
cortex behavior, modeled as consecutive processing stages. Also, some metrics
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deal with cognitive issues about the human visual processing modeling thatissues
as additional stages.

The main difference between the FR metrics of this framework is related with
the way they perform the subband decomposition inspired in the complex HVS
models [72, 73, 74], low cost decompositions in DCT [75, 76] or Wavelet [63]
domains, and with other HVS related issues like in [77] where foveal vision is
also taken into account and in [78] where focus of attention is considered. It is
worth noting that a big percentage of proposed FR quality assessment models
share the common error sensitivity based philosophy, see figure 1.22, which is
motivated from psychophysical vision science research [18].

Figure 1.22: Common block diagram of the Error Sensitivity Framework

After some pre-processing in the space domain, usually the HVS models first
decompose the input signal into spatio-temporal subbands in both the reference
and distorted signal. As mentioned, this frequency decomposition is one of the
biggest differences between models, and hence between metrics. Then, an error
normalization, weighting process and masking process is carried out in order to
give the estimated degradation measure.

Pre-Processing

In this stage, some pre-processing operations are done in order to adequate some
characteristic of the reference and the distorted input versions. This operations
commonly include pixel alignment, image cropping, color space transformations,
device calibrations, PSF filtering, light adaptation, and other operations. Not all
the metrics perform all this operations, each metric adjust the inputs in a different
way.

A point to point misalignment can occur due to different reasons in the
compression, processing and/or transmission of the reference image, so some
metrics perform first a point to point correspondence that helps in upcoming
stages to minimize assessment errors due to this fact.

Image crop are use by some authors [76, 74, 1, 79] in order to center
processing in a region of interest or to avoid problems that arise in filtering stages
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with image boundaries. Some authors perform also some segmentation process,
in order to narrow the application scope of the metric to focus in these areas.In
[1] a segmentation process is done in order to determine which are the
”‘dominant blocking areas”’ based on the evidence that blocking artifacts are not
noticeable likewise in all regions of the image.

Some metrics decide to convert the color signal to a space color that is better
correlated to HVS. Author in [79] present a FR metric for color video sequences,
based on a contrast gain control model of the HVS. He perform a conversion
from the Y’Cb’Cr’ space color defined in the ITU-R Recommendation 601,to
an opponent color space (B-W: Black-White, R-G: Red-Green and B-Y: Blue-
Yellow) based on the HVS cones sensibility to each color component. They take
into account in their color space transformations the behavior of conventional CRT
(Cathode Ray Tube) displays.

In [76, 74] authors convert the reference and the distorted image into theYOZ
color space, where Y is the luminance expressed incandela/m2, O is an opponent
color channel calculated with a specific conversion matrix, and the Z channel is
the blue channel given by the CIE Z coordinate. This transform also includes
gamma transformation and a linear color transform.

Nevertheless some other authors do not perform any color conversions or
transformation, they in fact retain only the luminance information in order to
reduce the computational cost of their proposed metrics. Authors in [1] introduce
a Perceptual Blocking Distortion Metric based in the model proposed in [72].
They perform also the most important steps from the ESF, as frequency
decomposition, contrast sensitivity filtering, contrast gain control, errordetection
and pooling. Regarding the color conversions authors argue that only ifthe
metric precision is a critical issue then a color conversion as in [79] is
worthwhile, as it has been shown [80] that it is possible for the vision modelto
work on the luminance (Y) component only, without a dramatic degradation in
prediction accuracy. They propose also that the contrast sensitivity band-pass
filtering can be applied only to the luminance channel, based on the fact that
color contrast sensitivity is rather low for higher frequencies, reducingtherefore
computational costs.

Another type of pre-processing step is the need to convert the digital pixels
(stored in the computer memory) into luminance values of pixels on the display
device, through point-wise non linear transforms. Different gray-level
transformations or corrections are applied as pre-processing step in order to
account to contrast adaptation to luminance conditions.

Finally, the reference and the distorted images or videos need to be converted
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into corresponding contrast stimuli to simulate light adaptation. There is no
universally accepted definition of contrast for natural scenes. Manymodels work
with band-limited contrast for complex natural scenes [81], which is tied with the
channel decomposition. In this case, the contrast calculation is implemented later
during or after the channel decomposition process.

CSF

The CSF can be implemented in the channel decomposition step by the use of
linear filters that approximate the frequency responses to the CSF. Like in [82]
that is based in a local contrast definition and where a spatio-temporal three
dimensional filter bank is applied to the image, decomposing it in different
frequency perceptually channels. The filter bank design takes into account
subjective psycophysical experiments in order to fix the contrast sensitivity for
each frequency range and orientation, an so, the frequency channel
decomposition includes the contrast sensitivity function.

But most of the metrics choose to implement the CSF as weighting factors that
are applied to the channels after the channel decomposition, providing foreach
channel a different perceptual sensitivity. In chapter?? we will discuss how to
introduce the CSF after the decomposition step but in the image encoding scope.

Decomposition

Figure 1.23: Daly frequency decomposition model

Transformations from the image spatial domain into the frequency domain has
been extensively use in the literature in image and video coding algorithms. The
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Figure 1.24: Lubin frequency decomposition model

Figure 1.25: Simoncelli et al. frequency decomposition model, Steerable Pyramid

most widely used frequency transforms are the Discrete Cosine Transform (DCT)
and the Wavelet transform. This simple transforms have been reported dueto their
suitability for the codification process and certain applications, rather than their
accuracy in modeling the cortical neurons; their models are not close enough to
the channel decomposition that our HVS does while process the incoming signal
from our eyes. Nevertheless some metrics use DCT [75] or Wavelt [63] frequency
decomposition with good correlation with MOS values.

Quality metrics, that try to emulate, as accurate as possible, the way in that
our HVS assess the quality of the viewed scene, use more complex models of this
HVS frequency channel decomposition, but taking into account the constraints
of application and computation. Depending also on the metric type and the type
of distortions it handles, metrics use different different channel decomposition
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Figure 1.26: Wavelet frequency decomposition model

Figure 1.27: DCT frequency decomposition model

models.

Cortical receptive fields are normally represented by 2D Gabor functions, but
the Gabor decomposition is difficult to compute and is not suitable for a good
computational light implementation and for some operations as invertibility,
reconstruction by addition, etc.

Normally, frequency decomposition is produced by a filter banks in which
design must be incorporated spatial location, spatial frequency and orientation in
order to resemble the HVS frequency and orientation channels. This filter bank
design differs among authors. From a practical and implementation point of view
several authors have implemented pyramidal filter structures. In [83] Watson
modeled a frequency and orientation decomposition with similar profiles than the
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2D Gabor functions but computationally more efficient. Other authors like Lubin
[37], Daly [84], Teo and Heeger [72] and Simoncelli et al. [85] provided
different models trying to approximate as close as possible to the HVS channel
decomposition avoiding prohibitive implementation issues. In [85] Simoncelly
proposed the steerable pyramid which is a frequency multi-scale and
multi-orientation image decomposition that is invariant to translations and
rotations of the stimuli, without aliasing effect and invertible. In figures 1.23 to
1.27 some of this channel decomposition models are shown.

There are also some models that cover temporal frequencies decompositions
in order to account for the characteristics of the temporal mechanisms in the
HVS [79, 82]. The design of temporal filter banks is normally implemented
using Infinite Impulse Response filtesr (IIR) that give a delay only of a few
frames, other authors use Finite Response Filters that although having a bigger
delay are simpler to implement.

Although the use of that sophisticated channel decomposition models is com-
monly used in QAMs, normally simpler transforms like DCT or Wavelet are still
employed in the design of image or video codecs due mainly to its reduced com-
putational cost.

Error Normalization and Masking

As explained in 1.3.8 masking occurs when a stimulus that is visible by itself
cannot be detected due to the presence of another stimulus. Sometime facilitation
occurs, that is when a non visible stimulus becomes visible due to the presenceof
another.

Figure 1.28: Typical implementation of masking in quality metrics

Most of the HVS models in this framework, implement error normalization
and masking in the form of a gain-control mechanism, using the contrast
visibility thresholds in order to weights the error signal for each channel, see
figure 1.28. Some metrics [73], normally due to complexity and performance
reasons, use only intra-channel masking, i.e. masking occurs only in each region
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of the decomposed (frequency and orientation) spectral domain, while other
models [72] include inter-channel masking as there are evidences that channels
are not totally independent in the HVS.

The visibility threshold adjustment at a point is calculated based on the energy
of the reference signal (or both the reference and the distorted signals) in the
neighborhood of that point, as well as the HVS sensitivity for that channel in the
absence of masking effects (also known as the base-sensitivity). For every channel
the base error threshold (the minimum visible contrast of the error) is elevated to
account for the presence of the masking signal, and for this masking elevation
several masking models are typically used. The elevated visibility threshold is
then used to normalize the error signal. This normalization typically converts the
error into units of Just Noticeable Difference (JND), where a JND of 1.0 denotes
that the distortion at that point in that channel is just at the threshold of visibility.

Some authors [86] include also in this stage the luminance masking also
called light adaptation. Detection threshold for a luminance pattern depends
upon the mean luminance of the local image region. So, the brighter the
background is the higher the luminance threshold is. Up to a variation of 0.5 log
units in the luminance threshold might be expected to occur within an image due
to the mean luminance of the block for which it is calculated (assuming a block
basis image encoder). Watson propose a power function for approximatethe
luminance threshold for a DCT block. In [76] a local contrast calculation is
included for every DCT block converting each DCT coefficient in a value in the
range from -1 to 1, that expresses the amplitude of the corresponding basis
function to the average luminance in that block.

In [33, 87] we can find comparisons of different masking models and some
considerations about how to include them into an image encoder. In [88] authors
propose a contrast gain-control model of the HVS that incorporates also a contrast
sensitivity function for multiple oriented bandpass channels.

Error Pooling

The last step in the process is the error pooling which is the process of combining
the error signals in different channels into a single distortion/quality interpretation
giving different importance to errors depending on the channels. For most quality
assessment methods, a Lp norm or Minkowski norm is used for error pooling
expressed as in equation 1.3. Whereel,k is the normalized error of coefficient k
at frequency levell andβ is a constant value lying between 1 and 4. Importance
weights can also be given based on the visual importance of different regions in
the image.
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Most of the previously cited metrics are FR metrics and follow the functional
stages of the Error Sensitivity Framework although with variations. This schema,
specifically the summation or pooling stage, allow the metrics to produce spatial
error maps, frame-level distortion scores and sequence-level distortion scores. In
these sense an image quality assessment metric can be use directly to rank video
sequences. For the time domain some metrics use temporal HVS models or
information to accurately reproduce human scores while others simply provide
their sequence quality value as a frame-quality average.

Now, we will summarize the most relevant and cited metrics of this
framework.

In [72] model, Teo and Heeger include basically all steps from EFS and is one
of the first reference metric of this framework. Its model is based in the analysis
of the responses of single neurons in the visual cortex of the cat, wherea contrast
gain control mechanism keeps neural responses within the permissible dynamic
range while at the same time retains global pattern information. They perform
a Quadrature Mirror Filter (QMF) frequency decomposition. The gain control
mechanism is realized by an excitatory nonlinearity that is divided by a pool of
responses from other neurons. The distortion measure is then computed from
the resulting normalized responses by a simple squared-error norm as explained
before.

The Moving Picture Quality Metric (MPQM) [82, 73] is a FR metric that
pre-process the sequences in blocks, doing a coarse segmentation of regions,
uniform, pattern and borders, in order to fix the base masking threshold for each
image block. Frequency decomposition is based on a local contrast definition
and Gabor-related filters for the spatial decomposition, it uses an isotropicfilter
for low frequencies regardless the orientation and for the frequency bands of
2,4,8 and 16 cpd and another filter for each orientation (0,π/4, π/2 and 3π/4).
The 17 filtered spatial decomposition is followed also by two temporal
mechanisms, as well as a spatio-temporal CSF and a simple intra-channel model
of contrast masking. The masking mechanisms consist of dividing the filtered
error signal (original filtered minus distorted filtered) by the detection threshold
getting this way data in ”‘units above threshold”’. Data from each channelis
gathered together in a pooling step. They provide results for a global metricand
for more detailed metrics for each of the basic image components: uniform areas,
contours and textures. The global metric takes also into account the focusof
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attention computing the sequence in three-dimensional blocks accounting for
persistence of the images on the retina. Pooling this three-dimensional blocksthe
global distortion measure is given. The final distortion measures (global and
components) can be obtained in ”‘Visual Decibels”’, expresed in the commonly
used decibels (dBs) or in a quality rating on a 1 to 5 scale resembling the MOS
scale.

Based on self developed non-linear and supra-threshold contrast perception
model authors in [75] propose the use of a FR metric, working in the DCT
domain, that deals with a wider range of distortions than other model based
metrics. Their model is based on experimental perception results, so it modelsas
a whole the HVS, including the effects from photoreceptors to the post-transform
suprathreshold non-linearities. They argue that such a model works better than
models that are base on a stage-after-stage sequential model based on
disconnected characteristics of the HVS. Based on the fact that the HVS maps
continuous contrast range into a finite set of discrete perceptions, they model the
bit allocation properties of the HVS as a redundancy removal process analogous
to vector quantization. Their experimentally parametrized Information
Allocation Function (IAF) model, is based on the idea that if the HVS allocated
more information in one area (frequency and orientation), more visual
importance is then given to that area. Their IAF value, that includes not only
sub-threshold or at threshold behavior of HVS but also the reactions to
supra-threshold impairments, is used to weight the DCT coefficients, and by
measuring the differences between the perceived images (original and distorted
are processed with the IAF) a subjective difference between both image is given.

Following the ESF framework stages, in [86] Watson introduced the DCTune
metric a FR metric for monochrome images, tested with the JPEG image
compression standard, which was extended in [89] for color images and in[76]
for color video sequences with the name of Digital Video Qualtiy (DVQ). The
method treats each DCT coefficients as an approximation to the local response of
a visual channel. For a given DCT quantization matrix the DCT quantization
errors are adjusted through each one of the ESF stages (contrast sensitivity, light
adaptation and contrast masking) and pooled non-linearly over the blocksof the
image. This process results in a 8x8 ”‘perceptual error matrix”’ which is further
pooled again for each block to give the final total perceptual error. In[86] author
argue in favor of an image dependent quantization matrix giving arguments
against an image independent quantization matrix. He propose a method, that
following each of the ESF stages, obtains an visually optimum (at threshold)
quantization matrix for a specific image and bitrate. In [76] author include the
results of measurements of visual thresholds for temporally varying samplesof
DCT quantization noise in order to extend its previous metric to the time domain.
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In [74] authors extended the previous work providing also results fromsubjective
tests.

Although not following all the stages of the ESF, authors in [8] propose a FR
measuring tool for MPEG-2 video sequences. Their proposal is different as they
include a “Cognitive Emulator” stage after the “Distortion Weighting” stage. This
cognitive modeling of quality assessment is seldom included in quality assessment
metrics, and therefore this proposal is interesting because not only include a low-
level model of HVS but also try to model high-level cognitive decision stages.

In the Distortion Weighting stage, authors apply a low-pass filter to the
original and distorted sequence, with similar response as the CSF. Then, with the
aid of a edge detection step, that runs on the original image, a simplified masking
model is applied. The masking is applied in the space domain by modifying the
luminance values of the neighborhood (±5 pixels) of the edges, being maximum
at the sharp luminance transition. The masking function is applied for vertical
and horizontal edges and is composed as a combination of local masking
functions for the pixels in the aforementioned neighborhood. Prior to the
Cognitive Emulator authors obtain what they call the IPQ (Instrumental Picture
Quality). IPQ is a normalization and mapping of the PSNR to the visual rating.
As subjective rating of quality saturates above and below certain quality values,
they simply apply this saturation effect to the calculated PSNR of the distorted
image, getting this way their IPQ. Their saturation limits were fixed at 20 and 50
dB. The Cognitive stage is a predictor of the subjective results from SSCQE
subjective evaluation tests on video sequences. Authors propose a model to
reproduce the decision making tasks involved in a SSCQE test. Their Cognitive
model try to mathematically include the biased judgment that could be expected
as result of the rapid picture quality variation in the video sequence and the need
to rapidly decide the perceived quality. Based on the short-term human memory
behavior, the influence of strong stimulus that appears in a frame, persistsduring
several frames. When another strong stimulus occur within an interval shorter
than the memory interval this two stimuli may merge and normally mask the
quality of frames inside the two distorted frames. Due to the presence of the
distorted frames, the quality of the frames inside is judged to be worst than it
would be in the absence of the distorted frames. This fact is modeled by the
authors as a smoothing stage that modify the IPQ value of frames between
frames with lower IPQ value. The perceptual saturation is also included in their
model by normalizing the IPQ values in the range of 0.0 to 1.0. After the
Smoothing and the Perceptual Saturation stages an Asymmetric tracking stage is
performed. This stage takes into account the fact that observers respond
decisively and quick to degradation in picture quality, but hesitate and slow inthe
case of picture improvement. They model the subjective gain and losses response
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by modifying asymmetrically the value of the IPQ values to account for this fact.
The final stage is to delay in time the point where the modified quality value is
applied in the sequence due to the human response time that was previously
estimated (averaged) as 1 second. All these Cognitive stages try to synchronize
the video distortion with the SSCQE data.

Author in [79] propose the Perceptual Distortion Metric (PDM) a FR metric
for color video sequences, based on a contrast gain control model ofthe HVS.
He perform a conversion from the Y’Cb’Cr’ space color to an opponent color
space as pre-processing stage. This metric propose a separated temporal and
spatial frequency decomposition. In the research of the temporal mechanisms in
HVS there is a consensus of the existence of at least two filtering stages, a
low-pass and a band-pass referred as sustained and transient channels. Winkler
uses two IIR filters to model these stages applying the low-pass filter to all three
color channels while the band-pass filter is applied only to the luminance channel
to reduce complexity. The spatial decomposition is implemented with the
steerable pyramid transform proposed by [85] which has the advantageof being
rotation-invariant, self-invertible and because minimizes the amount of aliasing
in subbands, but requires higher computational load. CSF is implemented as a
weighting process after subband decomposition. Masking is implemented as an
extension of Watson [86] masking model to color images and to video sequences.
In [80] the author tested the PDM metric with different color models. Using the
CIE L*a*b* and CIE L*u*v* models with the metric has better correlation with
human scores. He concluded also that using a luminance only model produced
slightly lower correlations but the slight increases in accuracy of the color
versions may not justify the double computational load imposed by the full-color
PDM.

Encoding images giving more bits (information) to the correct Regions Of
Interest (ROI) and discarding less important information from peripheral regions
can be perceptually improved by maximizing quality value given by a foveated
quality metric. Therefore, some metrics use models of the HVS that include
foveation (see 1.3.2) in their design. In [77, 39] the Foveated Wavelet Image
Quality Index (FWQI) is presented. FWQI is a FR metric working in the wavelet
domain and based on the fact that the HVS is highly non-uniform in sampling,
coding and processing. The HVS spatial resolution is higher around the fovea
and decreases rapidly with increasing eccentricity. The reason of usinga wavelet
decomposition for this metric is because wavelet analysis delivers a convenient
way to simultaneously examining frequency and spatial information. The design
of this metric include information about the space variance of the CSF, spatial
variance of the cutoff frequency and information about the variation of the
human visual sensitivity in different wavelet subbands. The distance to the image
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and the display resolution plays also an important role. The perceptual
importance of each wavelet subband is taken from the model in [28], whichfixed
the error sensitivity for each subband based on experimental results. Authors
combine this model with a model of the distance of each wavelet coefficient to
the foveation point in spatial domain, obtaining after pooling their FWQI.

In [1] authors propose a blocking impairment metric, the Objective Blocking
Rating (OBR) and the Perceptual Blocking Distortion Metric (PBDM) based in
the OBR. PDMB is a FR metric based in the [72] HVS model with the
modifications made in [82], that include temporal filters and CSF, and also with
the color extensions made by [79]. This extended model was finally modified to
change the gain control stage to the one proposed by [88]. All the stagesin the
model clearly explained and slightly simplified to reduce computational effort.
After some parametrization authors get the same correlation with MOS values
than the PDM metric, but with lower computational cost.

Figure 1.29: Block diagram of the PBDM [1]

The main steps of [1] can be shown in 1.29. The Steerable Pyramid is used to
perform the frequency decomposition, but only to a central region of theimage in
order to avoid boundary effects. The CSF is then implemented as a weight factor
that multiplies each subband in the wavelet domain. The CSF weighted
coefficients are then passed to the gain control mechanisms that squares and
normalize the coefficients. As known, theLL subband holds the low-pass band.
It is important to notice that authors pre-process the frames in order to be able to
pass the gain-control stage to this subband, by substracting the mean valueis
subtracted to each pixel in the frame (in the spatial domain) before the frequency
decomposition. This pre-processing step is needed therefore, in orderto prevent
the accumulation of energy into the low-pass band, which could produce that the
magnitude of that coefficients fall out of the the dynamic range of the
gain-control stage. A final pooling stage simulates the integration process of the
HVS obtaining finally the perceptual distortion map, with the same size as the
original frame, assign to each pixel the perceptual distortion at that spatial
location.
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As exposed in Fig 1.29 authors propose and introduce as an additional
blocking stage, so that their algorithm produces a blocking region map. They
also provide a method to calculate the ringing artifacts produced after the
frequency decomposition, but as ringing is produced due to edges reconstruction
errors should not be considered as blocking artifacts, so that ringing areas are
excluded from the blocking region map. Both algorithms rely on experimentally
adjusted thresholds. Authors averaged the summed blocking distortion by the
number of frames and experimentally adjust the dynamic range of the metric in a
scale of 1 to 5. Blocking distortion is calculated in the previously segmented
”‘blocking dominant region”’.

As the focus of attention of viewers is located mainly in faces and moving
objects authors in [78], although not proposing a novel metric, they combine the
use of two quality assessment metrics in order to achieve the global quality rating
of a video sequences. When focus of attention is located on a particular area of
the scene the background or the rest of objects in the scene are coarsely processed.
They combine the previously commented FR PDM metric, which is based on a
HVS model and NR [90] metric to measure the influence of blockiness, blur and
jerkiness artifacts. The combined metric is guided from a semantic segmentation
of images. The semantic segmentation is produced mainly for people faces. When
focus of attention is placed in moving objects, then background objects or those
with different velocities are processed less accurate also. In [48] a spatio-temporal
CSF model that account for this is presented.

Authors in [63] propose an interesting proposal of two metrics, a FR and a
RR one for video sequences, being based both metrics, on the same HVS model.
Their model follow all the aforementioned stages as, color space conversion,
temporal filtering, spatial filtering, contrast computation masking and
summation. As they point out, the use of a RR or a NR metric that is specifically
designed for catch some impairments, as blocking or blurring, have the
disadvantage of not being able to determine if one potential artifact is part of the
sequence or the result of the compression process of a new generationof codecs
or algorithms. Therefore they based their RR in the same HVS model than the
FR one, but working with a reduced bandwidth version of the reference
sequence. This reduction can be scaled up to FR, adapting to the available
bandwidth. Although their model is based on previous HVS models, the
parametrization that authors perform to the model is guided by the responses to
natural video frames rather than by the responses to simple visual stimuli such as
sinusoidal gratings. In addition authors propose a method to perform a
perceptually driven rate control based on a previous work [91] and using the new
RR metric as distortion measure in the rate control algorithm.



52 Chapter 1. Objective Quality Assessment Metrics

HVS Properties Framework

In this framework we include other types of metrics, that although are not based
on a specific HVS model, are still inspired in the HVS in the sense that their
design takes into account some of the aforementioned HVS properties. We also
include here, those metrics that are build to detect specific impairments produced
by any of the processing stages of images and videos, like quantization, encoding,
transmission etc, by analyzing different image properties.

The Institute for Telecommunication Sciences (ITS) presented in [92] an
objective video quality assessment system that was based on human perception.
Instead of following stage by stage one of the HVS models, they extract several
features from the original and degraded video sequences. That features were
forward statistically analyzed in comparison with the corresponding human
rating extracted form subjective tests. This analysis provide the parameters that
adjust the objective measures for these features and after being combined in a
simple linear model, they provide the final predicted scores. Some of the
extracted features require the presence of the original sequence whileothers are
extracted in a no reference mode. The proposed metric exploits spatial and
temporal information. The processing include Soebel filtering, Laplace filtering,
fast Fourier transforms, first-order differencing, color distortion measures and
moment calculation.

Based on previous works, the ITS in [62], proposed a RR metric for
in-service quality monitoring system. Their metric is build on a set of
spatio-temporal distortion metrics that can be use for monitoring in-service of
any digital video system. Authors expose that a digital video quality metric, in
order to be widely applicable must accurately emulate subjective responses, must
work over the full range of quality (from very low bit rate to very high), must be
computationally efficient and should work for end-to-end in-service quality
monitoring. The metrics presented in their work are based in extracted features
from the video sequence as in [92], and in order to satisfy the last condition (to
be able to work in in-service monitoring systems), these features, extractedfrom
spatio-temporal regions, are sent, compressed following the ITU-R
Recomendation BT.601, through an ancillary data channel so that it can be
continuously transmitted. In the paper the authors describe these spatio-temporal
distortion metrics in detail so that can be implemented by researchers.

Later, through The National Telecommunications and Information
Administration (NTIA), the same authors, proposed the General Model ofthe
Video Quality Measurements Techniques (known as VQM metric) for estimating
video quality and its associated calibration techniques. This metric was
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submitted to be independently evaluated on MPEG-2 and H.263 video systems
by the Video Quality Experts Group (VQEG) in their Phase II Full Reference
Television (FR-TV) test. The VQM, that is based on the same algorithms used in
their previous works [92, 62] was standardized by the VQEG and a technical
report [93] was supplied with a full description of the metric and all its operation
modes. This metric was later summarized in [94]. As mentioned before the
VQM uses RR parameters that are extracted from optimally-sized
spatio-temporal regions of the video sequence. The ancillary channel and the
calibration techniques require at least a 14% of the uncompressed sequence
bandwidth. Information is sent through that channel. Although being
conceptually a RR metric was submitted to the VQEG FR-TV test because the
ancillary channel can be use to receive more detailed and complete references
from the original frames, even the original frames themselves. The VQM withits
associated calibration techniques comprise a complete automated objective video
quality measurement system. The calibration techniques include spatial
alignment, valid region estimation, gain and level offset calculation and temporal
alignment. Finally in [95] authors reduce the requirements of some of the
features extracted in the NTIA General Model in order to achieve a monitoring
systems that uses less than 10 kbits/s of reference information.

In [96] authors propose a NR metric for blocking artifacts in images.
Previous NR blocking metrics measured the amount of blocking by using a
weighted mean-squared difference along block boundaries [97]. This method can
produce situations in that even the original image can be evaluated as blocky.
Authors propose to treat the distorted image as a pure non-blocking image that is
interfered with a pure blocky signal, and the key of the metric is to measure the
power of that blocky signal. They define an ideal 1-D blocky signal thatis
suppose to be interfering the original image for each row and column. For
measuring the amount of blocking they use a power spectrum estimator of the
image in the Fourier domain, i.e. after applying the FFT. A final weighting and
summing stage, that processes row and column information, produces the final
blocking measure.

Authors in [98] propose another NR metric for blocking artifacts, this work
was extended in [99]. Their metrics works in the DCT domain. They first define
a 2-D step function for modeling an overlapping block that is made off the
bottom and upper part of vertically adjacent blocks, or left/right for horizontal
adjacent blocks. Once they have modeled the 2-D step function of that
“overlaping block” and are able to measure the amount of edge activity
(blocking) in the DCT domain, they include the luminance masking and the
texture masking in the process. Although more accurate models have been
proposed in the literature, they propose a simple model of texture masking
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artifacts to facilitate real-time operations, using the amplitude of the 2-D step
function and the amount of blocking measured for the horizontal and vertical
edge activity. For luminance masking they adopt the model proposed in [100].
Finally they produce a map of “artifact visibility” for the whole image, so that
block artifacts reducing algorithms can adaptively work according to local
visibility. They also provide a combined numerical value as a global blocking
artifacts measure in the image.

A NR metric for blocking and blurring and specifically designed for JPEG
compressed images is presented in [101] with low computational cost. Authors
provide a Matlab implementation of the metric and the value for their model
parameters obtained so that the results can be reproduced. The metric measures
blocking and blurring combining both together to get the final image score. First
they calculate for each row a new row that holds the differences with the previous
row. This ”‘differences image”’ is used to calculate next values. The blockiness
measure is estimated as the average differences across block boundaries and the
blurring is calculated using the activity of the image signal. The activity is
calculated using the average for in-block differences and the zero-crossing rate
for each block. A zero-crossing occurs when for a “differences row” the
difference value for a specific column crosses zero, i.e. previous column has
positive value and next column negative or vice versa. Finally the blockiness and
the two activity measures are modeled in an equation whose parameters are
obtained by fitting the MOS values of various test image sets.

A NR perceptual blur metric is presented in [102] that is based on the analysis
of the spread of the edges in an image. They argue, based on a correlation with
MOS values, that measuring the spread of vertical edge is sufficient to model
the perception of blur, avoiding to repeat the measures for horizontal edges or
in the direction of the gradient of that edges. They use a Sobel filter to detect
vertical edges and measure the local blur for each row as the width of the edge.
Averaging this local blur for all the edge locations on the whole image they get
the final blur measure. To detect the width of each edge detected with the Sobel
filter, the beginning and end pixels are determined by searching around theedge
location the local maximums and minimums for each row. Their proposal has
low computational complexity and its performance is independent of the image
content.

In [103] the same authors extended their work to include the aforementioned
NR blur metric with a FR Blur metric and a FR Ringing metric. The proposed
metrics are defined in the spatial domain with a very low complexity and are based
on the analysis of the edges in an image. The blur metrics measure the spread of
the edges and the ringing metric measures oscillations around edges. In the FR
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version the edge used for their algorithm are those from the original image while in
the NR version the edges are obtained directly form the processed or compressed
image. The ringing metric is based on the FR blur metric. From the wavelet
decomposition filters they obtain a fixed ring-width. The edge width, from blur
metric, is substracted to that ring-width, this width which is the distance around
the edge (left and right) where differences (oscillations) with original image are
locally measured for each edge position. The difference between the maximum
and minimum difference in the ring-width (left and right) is multiplied by the ring-
width itself giving the amount of ringing for each edge position. Averaging for
all edge positions in the image they obtain a global ringing measure. They finally
combine both metrics (blur and ringing) to a FR quality metric.

The Reduced Reference metric called HIQM (Hybrid Image Qualitiy Metric)
is proposed in [104] is a weighted sum of different image artifact measures
(smoothness, blocking, ringing, masking and lost block/pixel). The blocking
measurement is based on the algorithm proposed by Wang et. al. [96, 101]. The
blur measurement algorithm is based on previous work in [102]. They usethe
metric proposed in [105] to detect ringing and lost blocks by measuring the edge
activity and the gradient activity that is higher in the distorted image due to the
apparition of false edges. Finally masking detection is based on the global
contrast measure of the image that is in turn based on the standard deviation of
the first-order image histogram that is used to measure the average brightness of
the image. A weight is given for each distortion and an averaged weighted sum
produce the final quality value of the metric. The weights are empirically
obtained in order to achieve a good correlation with PSNR.

The proposal of [106] include another way to assess the quality of images.
In this case, images to be judged are improved versions of the original ones, i.e.
they try to predict the quality of enhanced images. Authors argue that the Error
Sensitivity approach or the use of RR or NR metrics that are based in properties
of the distorted image are not suitable for this task because those methods are
designed to assess quality of degraded images. So they propose to use a neural
network that has been trained to predict the final quality of the enhanced images
as it would be judge by human assessors. The inputs to the neural networkare
numerical values corresponding to several objective properties of theenhanced
image. These values are determined at the signal level, i.e. are based on pixel
values that are extracted block by block (block size 32x32 pixels). These features
describe the image content in terms of luminance distribution, spatial orientation,
frequency energy distribution, etc.

As in other proposals, authors in [107] propose the use of a RR metric to
assess the quality of a video sequence. They use image properties or indicators to
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measure differences between the original and distorted image that are encoded
and transmitted with the video sequence. So at the decoder side the same
properties are obtained from the distorted image and compared with the original
ones. Authors use this RR metric in combination with another NR metric to
assess quality of video streaming over IP networks. The RR metric accountsfor
image quality while the NR metric accounts for transmission quality. The basic
indicators for the RR metric include the Estimated Additive Gaussian Noise
power level (based on Wiener filtering), the Impulsive Noise power level
estimation (based on median filtering), Blocking and Blurring artifacts (basedon
[96, 101]) and finally statistics of Ringing Artifacts (based on a Perona-Malik
filter). These properties are embedded in the coded bitstream. The NR
component mainly refers to the impact of temporal resolution reduction, packet
losses, latency and delay jitter. Although packet loss and out of sequence ratios
can be derived by gathering the communication channel output, authors use only
the decoded information to detect these effects.

Finally other metrics that take advantage of the the contrast masking effect
of the HVS are included in this framework. So, we can find metrics based on
watermarking techniques that analyze the quality degradation of the embedded
image [108]. Also, in the metric presented in [109] based in a new concept named
“Quality-aware image”, authors extract some features of the original imagethat
are embedded into the image as invisible hidden messages. When the distorted
image is received the loss of parts of that hidden features yields to a objective
measure of the quality of the received image.

Statistics of Natural Images Framework

Some drawbacks of the Model Based HVS framework are reviewed in [2,110].
Some of these drawbacks are, for example, that the HVS models work
appropriately for simple spatial patterns, like pure sine waves, however when
working with natural images, where several patterns coincide in the same image
area, then their performance degrades significantly. Another drawback is related
to the Minkowsky error pooling, as it is not a good choice for image quality
measurement. As authors show, different error patterns can lead to the same final
Minkowsky error. Also the HVS Model based framework is designed to estimate
the threshold at which a stimulus is just barely visible. These subjectively
measured threshold values are then used to define error sensitivity measures as
the CSF and various masking effects. But most of the impairments produced
while processing images are above this thresholds, i.e. are clearly visible, so it is
not clear that the near-threshold models can accurately assess suprathreshold
distortions. Some studies try to include suprathreshold psychophysics for
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analyzing image distortions [111, 112, 113].

Therefore, several authors argue that the approach to the problem of
perceptual quality measurement must be a top-down approach, analyzingthe
HVS to emulate it at a higher abstraction level. The authors supporting this
approach, propose to use the statistics of the natural images. In [114] a review of
recent Natural Scenes Statistics (NSS) models is presented.

Some of them propose the use of image statistics to define the structural
information of an image. When this structural information is degraded, then the
perceptual quality is also degraded. In that sense, a measurement of thestructural
distortion should be a good approximation to the perceived image distortion.
These metrics are able to distinguish distortions that change the image structure
from distortion that do not change it, like changes in luminance and contrast.

In [2, 115] authors define a Universal Quality Index that is able to determine
the structural information of the scene. This index models any distortion as a
combination of three different factors: a) the loss of correlation between the
original signal and the distorted one, b) the mean distortion that measures how
close the mean of the original and distorted version are, and c) the variance
distortion that measures how similar the variances of the signals are. The
dynamic range of the Quality Index i [-1,1] being 1 the best value, when the
signals are identical. They apply this index in a 8x8 window for an image
obtaining a quality map of the image. The overall index is the average of the
quality map.

Authors in [110] further improve their previous quality index proposing the
SSIM (Structural SIMilarity) quatliy index. This metrics, based in the Universal
Quality Index [2, 115] works in the spatial domain. They expose that the index
get better results if it is applied locally and then averaged rather to apply it over
the whole image. Applying the SSIM locally reduces the foveation effect, as at
typical viewing distances only a part of the image is perceived with high
resolution, and can provide a spatially varying quality map of the image. Instead
of applying it in a 8x8 block basis as in their previous work, which produces
blocking effect, they use a 11x11 circular-symmetric Gaussian weighting
function. They use the Mean SSIM (MSSIM) index to evaluate the overall image
quality. Due to the existence of the quality map, the quality of Regions Of
Interest (ROI) can be easily computed by averaging the quality in that regions.
Also several weighting functions can be applied to the local quality index in
order to adapt to any application, however they use a uniform weighting. This
work was later fully explained as a book chapter in [116].

Authors in [117, 118] proposed a video quality metric following a frame by
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frame basis. Authors apply the SSIM index locally in 8x8 blocks randomly
selected to reduce computational costs. They apply the SSIM index to the Y,Cb
and Cr color components independently and obtaining the global color SSIM
index using a weighted summation. Using statistical features like mean and
variance they classify the blocks as smooth region, edge region or textureregion.
Results of all the selected areas are averaged to give the frame quality value. This
value is further adjusted based on the overall blockiness of the image and the
motion factor. The blockiness and blurring are evaluated globally for eachframe
using the NR metric proposed in [96]. Instead of using a uniform weighting
factor while averaging the randomly selected blocks, they assign different
weights based in the local luminance, for example, as dark areas attract hardly
the attention of the viewer these areas get a lower weight. Authors also perform a
second adjustment based on how the blur distortion is considered depending on
the motion in the scene. The motion information is obtained by a simple
block-based motion estimation algorithm with full pixel resolution. The final
video sequence quality index is the average of the frames quality values. Ina still
or low motion frame, severe blurring artifacts are very annoying, but in a large
motion frame the same amount of blur is perceived as less important because
motion blur occurs at the same time. They give different weights according to the
type of the frame motion.

In [119] extended their SSIM to a new Multi-Scale Structural SIMilarity (MS-
SSIM) model. The new proposed multi-scale analysis runs a low-pass filter to
the images (original and distorted versions) and a downsampling process tothe
filtered images iteratively. Then at each of the resulting scales the SSIM index is
applied. After M-1 iterations the Scale M is obtained being the original resolution
the Scale 1. At each scale the contrast comparison and the structure comparison
of the SSIM is applied whereas the luminance comparison is applied only at Scale
M. The final multi-scale SSIM index is obtained by a weighted combination of
the comparison operators. Different weights can be applied a to each scale, in the
same sense as the CSF apply different weights to each frequency subband, they
uniformly weight each scale. They perform a subjective test in order to detect the
perceptual importance distortions (in increasing grade) applied at each scale. The
results of this subjective test provided the perceptually adjusted weights for each
scale. The reason why authors did not use the CSF for this task, is because it is
typically measured at visibility thresholds levels and using only simplified stimuli
(sinusoids) and the purpose of the new MS-SSIM is to compare the quality of
complex structured images with distortions above threshold.

As stated in [120] the main drawback of the spatial domain SSIM algorithm
is that it is highly sensitive to translation, scaling and rotation of the image. So, in
this work [120] authors presented the Complex Wavelet SSIM (CW-SSIM)which
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extend the SSIM method to the complex wavelet transform domain and make
it insensitive to non-structural distortions like zoom, rotations and translations
produced by movements of the acquisition devices. This insensitivity works only
if this movements or zooms are smaller than the used wavelet filters.

In [121] authors propose a general adaptive linear system framework that is
able to decompose the distortion between two images into linear combinations of
the constituent distortions. One linear combination corresponds to non-structural
distortions like luminance and contrast changes, gamma distortions and horizontal
and vertical translations. It is obtained in a pre-procesing step where theweights
for each type of distortion is also computed. The other combination corresponds
to structural distortions. A frequency decomposition method, based on the DCT
transform matrix, is applied to obtain the structural distortions. With the weighted
combination of the two types of combination a QAM is proposed.

Other authors use also statistics of the scene in a different way. They state
that the statistical patterns of natural scenes have modulated the biological
system, adapting the different HVS processing layers to these statistics. First a
general model of the natural images statistics is proposed. The modeled statistics
are those captured with high quality devices working in the visual spectrum
(natural scenes). So, text images, computer generated graphics, animations,
draws, random noise or image and videos captured with non visual stimuli
devices like Radar, Sonar, X-Ray, etc. are out of the scope of this approach.
Then, for a specific image, the perceptual quality is measured taking into account
how far its own statistics are from the modeled ones.

In [122] a statistical model of a wavelet coefficient decomposition is
proposed, later in [123] a RR Image Quality Assesment metric (RRIQA) is
presented. Authors use a model of the statistics of natural images in the wavelet
transform domain. They work with the steerable pyramid wavelet transformfrom
[85] and use the Kullback-Leiber Distance (KLD) to measure how different are
the marginal probability distributions of wavelet coefficients in the reference
image and distorted images. This is used as measure of distortion. They find that
several well known types of image distortions produce significant changes in the
wavelet coefficient histograms what is detected by the metric. They do not
assume any distortion model, so the proposed method is potentially useful for for
a wide range of distortion types. The marginal probability distribution from the
distorted image is obtained directly from the decoded wavelet coefficients, but
the marginal distribution from the reference must be transmitted to the receiver
as RR data. If the histogram bin size is small then the bandwidth required to
transmit the RR features is very demanding, but if the histogram bin size is large
then the accuracy of the KLD is reduced. But they send only three parameters as
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RR data. The cue is that the marginal distribution of the coefficient in an
individual wavelet subband can be modeled as a two-parameter Generalized
Gaussian Density model (GGD) as they refer. The third parameter is the
prediction error between the original distribution and the GGD distribution. So,
in the receiver side using the GGD parameters and the error prediction the
marginal distribution of the reference image can be reconstructed. These
parameters are computed and sent for each wavelet frequency subband.

In [124] authors propose an NR metric (NRJPEG200) that uses a statisticsof
natural images model in the wavelet domain [125, 126] in conjunction with
information of the distortion model of the JPEG2000 encoder. With both
information they build a simplified model that characterize images compressed
by JPEG2000 as well as uncompressed natural images. The statistical model
predicts the wavelet coefficient’s magnitude conditioned on a linear prediction of
the coefficient. The linear prediction is calculated based in two image dependent
estimated thresholds and the relationship of the coefficient with its parent,
grandparent and its neighbors. The quantization of wavelet coefficients produces
a reduction of the significant coefficients altering this relationships what is used
to predict the quality with no reference of the original image.

Some metrics defined under this approach take the objective quality
assessment as an information loss problem, using techniques related to
information theory [123, 6]. In [6] authors propose to approach the quality
assessment problem as an information fidelity problem, where a natural image
source communicates with a receiver through a channel. The channel imposes
limits on how much information can flow from the source (natural image),
through the channel (distortion process) to the receiver (human observer). So
they model the input and the output of the channel. The natural image is modeled
using Gaussian Scale Mixtures (GSM) which have been reported as very
appropriate to model the marginal density functions of the wavelet coefficients
and the highly space-variant local statistics of a wavelet transformed natural
image [127]. The distortion model is a simple attenuation and additive Gaussian
noise model in each subband. Given the source and the distortion the
Information Fidelity Criterion (IFC) is the mutual information between the
source and the distorted image, i.e. the statistical information that is shared. An
important feature of the IFC is that does not involve any parameters associated to
display devices, data from psychophisical experiments, viewing configuration, or
any stabilizing constants. The IFC is not a distortion metric, but a fidelity
criterion, i.e. ranges from zero (no fidelity) to infitity (perfect fidelity).



1.5. Comparison of QAM 61

1.5 Comparison of QAM

As previously mentioned, each QAM gets the quality of the image/video using
their own and specific scale that depends on its design. Therefore this raw quality
scores cannot be compared directly, even though the range of the values (the scale)
is the same. In order to compare fairly the behavior of various metrics for a set of
images or sequences, the objective quality index obtained from each metric has to
be converted into a common scale.

When reviewing the performance comparisons that authors made in their
QAM proposals, few details are provided about the comparison procedure itself.
So it is difficult to replicate these results. In addition, different tests, with the
same image set and even with the same subjects, can provide slightly varying
results for a set of metrics, but as explained in [128] the results should bein line
when test are correctly done.

In VQEG, subjective tests were repeated by several laboratories and the
Pearson correlations between results by different laboratories range from 0.924
to 0.986 with mean of 0.97 confirming that even the best test methodologies
cannot fully compensate for the uncertainty related to human factors such as test
subjects and the consistency and interpretation of instructions. These results
suggest also that slightly less consistent MOS scores are obtained in subjective
tests carried out with image databases containing several different types of
distortions than the obtained when the database has only a specific type of
artifacts.

Authors in [128] reviewed the sources of inaccuracy of each step of the
QAM comparing process shown at Fig. 1.30. Test video sequences or images
from a set or database with known subjective scores (MOS or DMOS) are the
input to the QAM. The QAM provides its quality indices or raw scores. Then,
regression analysis is used to find a function that maps the obtained raw scores
into subjective quality scores. Finally a correlation analysis is performed to
estimate how accurately the subjective scores are predicted from the objective
quality indices. The set of sequences or images in the database are called the
metric “training set” because are used to fix the regression function.

The sources of inaccuracy in this process, may be related to many factorsas
the reliability of the subjective reference data, the types and degree of the
distortions in the images or videos, the selection of the content that made up the
training and testing sets and even the use and interpretation of the correlation
indicators. This sources of inaccuracy can lead to quantitative differences when
the same QAM is tested by different authors, even when the tests are correctly
done.
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Figure 1.30: Block Diagram of the QAM evaluation process

The method in Fig. 1.30 is the one proposed by the VQEG [59] with some
refinements proposed in other relevant comparison tests [129], where the target
scale used is DMOS scale (Differences Mean Opinion Score). From a a subjective
test, for example a Double Stimulus Continuous Quality Scale (DSCQS) method
as suggested in [59], the Mean Opinion Score (MOS) can be calculated for the
source and distorted versions of each image or sequence in this set. The scale
used by the viewers goes from 0 to 100. These scores are converted into difference
scores and processed further as explained in [6] to get the DMOS also inthe 0-100
range.

The DMOS is the difference between the MOS value obtained for the original
image/sequence and the MOS value obtained for the distorted one. So, for a
particular image or sequence its DMOS value gives the mean subjective valueof
the difference between the original and the distorted versions. A value of 0 means
no subjective difference found between the images by all the viewers. Due to the
nature of the subjective test this value is very unlikely.

Performing a subjective test following the recommendations of the VQEG is
not an easy and quick task, because a lot of technical requirements mustbe taken
into account and some statistical analysis must be done to the raw subjective data
in order to follow VQEG recommendations [58]. So as exposed in figure 1.30the
source of the subjective scores for such comparison test, is usually an image or
video database with the associated MOS or DMOS values.

In [71], author review a set of perceptually scored image databases, LIVE
[130], CSIQ [131], IVC [132], Toyama [133], A57 [134], TID [135] and WIQ
[136]. In addition some video databases as CSIQ [137], TUM [138], LIVE[15],
VQEG-FR-PhaseI [139] and VQEG-HDTV-PhaseI [140] also includesubjective
values. For the majority of the databases analyzed in [71] results are in accordance
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with the results of our tests which are shown bellow.

1.5.1 Metric Comparison Results

The issues summarized in [128] encouraged and guided us to perform our own
comparison test with a set of the most relevant QAM whose source code ortest
software has been made available by their authors. The results of our tests, as
expected, were slightly different from other comparison tests but remain in line
with their results as [128] predicts. The metrics used in our study are summarized
herewith.

• The DMOSp-PSNR metric. We translate the traditional PSNR to the DMOS
space applying a scale-conversion process. We call the resulting metric
DMOSp-PSNR.

• The Mean Structural SIMilarity index [110] (MSSIM) from the Structural
Distortion/Similarity Framework. In the reference paper, this FR metric was
tested against JPEG and JPEG2000 distortion types. We test its performance
with the new distortion types available in the second release of Live Database,
“Live2 Database” since it is considered a generalist metric.

• The Visual Information Fidelity (VIF) metric [141] from the Statistics of Nat-
ural Images Framework. A FR metric that quantifies the information available
in the reference image, and determine how much of this reference information
can be extracted from the distorted image.

• The No-Reference JPEG2000 Quality Assessment (NRJPEG2000) [117] from
the Statistics of Natural Images Framework. A NR metric that uses Natural
Scene Statistical models in the wavelet domain and uses the Kullback-Leibler
distance between the marginal probability distributions of wavelet coefficients
of the reference and distorted images as a measure of image distortion.

• Reduced-Reference Image Quality Assessment (RRIQA) [123] from the
Statistics of Natural Images Framework. The only RR metric under study. It is
based on a Natural Image Statistical model in the wavelet transform domain.

• The No-Reference JPEG Quality Score (NRJPEGQS)[101] from the HVS
Properties Framework. A NR metric designed specifically for JPEG
compressed images

• The Video Quality Metric[94] (VQM General Model) from the HVS Properties
Framework. The VQM uses RR parameters sent through an ancillary channel
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that requires at least a 14% of the uncompressed sequence bandwidth.Although
being conceptually a RR metric, it was submitted to the VQEG FR-TV test
because the ancillary channel can be used to receive more detailed and complete
references from the original frames, even the original frames themselves.

As exposed, the first step in the comparison method is to perform a subjective
test to get the DMOS values. We have not done such a subjective test. Instead
of this, we have use directly the DMOS values published in the Live Database
Release 2 [130] and in the VQEG Phase I Database [139] following the method
shown in Fig. 1.30. Image metrics were applied to each frame of the sequences
and the mean raw value for all the frames was translated to the DMOSp scale.

As suggested in [128, 142] the performance evaluation of the metrics
(Correlation Analysis step) should be computed after a non-linear curve fitting
process. A linear mapping function cannot be used because quality scores are
rarely scaled uniformly in the DMOS scale, because different subjects may
interpret vocabulary and intervals of the rating scale differently, depending on the
language, viewing instructions and individual psychological characteristics.
Therefore a linear mapping function would give too pessimistic view of the
metric performance. Several mapping functions could be selected for this
purpose, such as cubic, logistic, exponential and power functions, being
monotonicity the main property that the function must comply with, at least in
the relevant range of values.

The non-linear mapping function between the objective and the subjective
scores used in our tests, was the one suggested by the VQEG and other relevant
authors [58, 59, 129], and is shown in Equation 1.4. It is a parametric function
that converts the metric raw score into a value in a Predicted DMOS (DMOSp)
scale. In this DMOSp scale the quality score given by a metric for a specific
image/sequence is directly comparable with the one given by the other metrics for
the same image/sequence.

Quality(x) = β1logistic(β2, (x− β3)) + β4x+ β5 (1.4)

logistic(τ, x) =
1
2
−

1
1+ exp(τx)

(1.5)

Equation 1.4 has five parameters, fromβ1 to β5, that are fixed by the curve
fitting process. We have not found in the literature any mapping function jointly
with the parameter values for any image/video database. So, we have calculated
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(a) VIF (b) MSSIM

(c) RRIQA (d) PSNR

(e) NRJPEGQS (f) NRJPEG2000

(g) VQM

Figure 1.31: Dispersion plots of the evaluated metrics including the curve fit for Eq. 1.4

these parameters based on sets of images and sequences that conforms our
“training set”.

In Fig. 1.31(a) to Fig. 1.31(g) the dispersion plots used in our fitting process,
for all the selected metrics are shown. Each point of the scatter-plots corresponds
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to an image in the training set and represents the DMOS value obtained from the
scores given by a set of viewers.

The X-axis of the plots correspond to the raw values given by each of the
metrics. In the Y-axis we have the corresponding DMOS values from the
database. The curve fitting process gives us the parameters for Equation 1.4,
which is represented by the solid curves. Depending on the metric, increasing
x-axis values can have different interpretations, for example, in Fig. 1.31(a) for
the VIF metric, 0 corresponds to the highest quality reported by the metric and
decreasing values means lower quality, whereas in Fig. 1.31(b) for the MSSIM
metric a value of 0 in the X-axis corresponds to lowest quality value being 1 the
corresponding value to best reported quality.

The quality of the images in the subjective test is variable, covering a large
range of distortion types and intensities for each distortion. Image distortions go
from very highly distorted to practically undistorted ones. The viewers gave their
scores for each image in the set, obtaining the average DMOS value. As shown in
Fig. 1.31(a), the dynamic range of the average DMOS values does not reach the
limits of the DMOS scale (0 and 100) for any distortion type, therefore the fitted
curve predicts DMOSp values inside the same dynamic range. This is the reason
why for a raw score of 0 (the best possible quality for the metric in this case)the
predicted DMOSp value is not 0, i.e. there was no image scored with a DMOS
value of 0, instead of that, the best DMOSp value obtained is around the value
of 20. So, in the case of the VIF metric its dynamic DMOSp range varies from
20 to 80. The rest of the metrics have slightly different dynamic DMOSp ranges
because the set of images used in each case is different, as we explain below.

Table 1.1: Equation parameters of metrics under study

β1 β2 β3 β4 β5

MSSIM -39.5158 14.9435 0.8684 -10.8913 46.4555
VIF -3607.3040 -0.5197 -1.6034 -476.0144 -693.3585

NRJPEGQS 37.6531 -0.9171 6.6930 -0.2354 40.7253
NRJPEG2000 37.3923 0.8190 0.6011 -0.8882 74.5031

RRIQA -18.9995 1.5041 3.0368 6.4301 5.0446
PSNR-DMOSp 23.2897 -0.4282 28.7096 -0.6657 61.5160

VQM-GM -163.6308 6.3746 -7.6192 114.4685 76.6525

Once the beta parameters have been obtained for each metric (see Table 1.1)
the raw scores can be translate to the DMOSp scale shared by all metrics and
hence, we can compare the results given by different metrics while scoring the
same image.
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The fidelity to subjective scores of a metric is consider high if the (PCC) and
the Spearman Rank Order Correlation Coefficient (SROCC) are close to 1 and the
Outlier Ratio (OR) is low [70]. In table 1.2 the performance parameters of our
fittings are shown. These performance parameters show the degree of correlation
between the DMOSp values and the subjective DMOS values provided by the
viewers. Performance validation parameters are the PCC the Root Mean Squared
Error (RMSE), the SROCC and the OR. In table 1.3 we include also the Mean,
Max and Standard Deviation of error. In order to interpret correctly themeaning
of “error” is worth to remember that the resulting DMOSp values for each metric
correspond to values located in the fitted curve plotted in red in figures 1.31(a) to
1.31(g). So the error for each DMOS point (blue points) is the distance (absolute
value) to the fitted curve. Outliers have not been removed from sets for obtaining
these error parameters who provide an idea of how sparse or close to thefitted
curve are the cloud of points in each case.

• The PCC is the linear correlation coefficient between the Prredicted DMOS
(DMOSp) and the subjective DMOS. It measures the prediction accuracyof a
metric, i.e., the ability to predict the subjective quality ratings with low error.

• The SROCC is the correlation coefficient between the DMOSp and the
subjective DMOS. It measures the prediction monotonicity of a metric, i.e.,
the degree to which the predictions of a metric agree with the relative
magnitudes of the subjective quality ratings.

• OR is defined as the percentage of the number of predictions outside the range
of 1.5 times the standard deviation of the subjective results. It measures the
prediction consistency, i.e., the degree to which the metric maintains the
prediction accuracy.

• Mean Error is the mean of the errors produced when obtaining each DMOSp
value in relation to their original DMOS value (for all images in the used
“training set”).

• Max Error is the highest error produced when obtaining the DMOSp values.

• Std Error is the Standard Deviation of errors

Another key point to consider while comparing QAM [128] is the correct
selection of the image or video sequence sets used as “training set”. The “training
set” is used to perform the curve fitting process. This set should be chosen with
special care and must be excluded from validation tests. So for each metric, the
fitting process must be done using images or sequences with impairments that the
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Table 1.2: Statistical parameters of the goodness of fit

PCC RMSE SROCC OR
MSSIM 0.8625 8.1809 0.8510 0.0359

VIF 0.9502 5.0187 0.9528 0.0282
NRJPEGQS 0.9360 5.7006 0.9020 0.0455

NRJPEG2000 0.9099 6.7306 0.9021 0.0059
RRIQA 0.9175 6.5393 0.9194 0.0353

PSNR-DMOSp 0.8257 9.0852 0.8197 0.0064
VQM-GM 0.8957 7.6435 0.9021 0.0000

Table 1.3: Error related parameters of the goodness of fit

Mean Err Max Err Std Err
MSSIM 6.2130 24.3351 8.1792

VIF 3.8676 25.4201 5.0219
NRJPEGQS 3.9946 21.9940 5.6562

NRJPEG2000 5.4029 18.4913 6.7506
RRIQA 4.8190 19.2447 6.4961

PSNR-DMOSp 7.2712 24.7603 9.0911
VQM-GM 6.3009 16.4353 7.6897

metric is designed to handle. See [128] for details of how an incorrect selection
of the image “training set” can influence in the final interpretation of the statistics
used in the correlation analysis.

So, the MSSIM, VIF, RRIQA and DMOSp-PSNR metrics were “trained”
with the whole Live2 Database because they are intended to be generalist
metrics. The NRJPEGQS was “trained” only with the JPEG distorted images of
Live2 database as this metric is designed only to handle this type of distortions.
And for the same reason the NRJPEG2000 was “trained” only with the JP2K
distorted images of the Live2 database and the VQM-GM was “trained” with a
subset of 8 video sequences and its 9 corresponding HRCs of the VQEGPhase I
database in a bitrate range of 1 to 4Mb/s.

It is important to mention that each of these “training sets” have different
dynamic ranges in the DMOS scale as the degree of distortions applied to the
images in each set is different.

We define as “homogeneous metrics” those which were trained with the same
sets and therefore sharing the same DMOS dynamic range. So, metrics are called
to be “heterogeneous metrics” when they were trained with different sets.
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In our study all the metrics have been “trained” only with the luminance
information and as suggested, only appropriate impairments are used while
conforming the “testing sets” for each metric. .

From the performance results we can conclude than with the images and
sequences that comprise our training sets the QAM that best performancegives,
i.e. a higher correlation with subjective results, is the VIF metric.

1.5.2 Analyzing Metrics Behavior

In this section we are interested in analyze the metrics behavior when measuring
image and video distortions produced in 1) compression scenarios at different
rates and 2) distortions produced by packet losses in mobile ad-hoc network
scenarios with variable degrees of network congestion an node mobility.

In Compression Environments

In this section we will study the behavior of the QAM under evaluation when
assessing the quality of compressed images and sequences with different encoders.
As exposed before, in the development of a new encoder or when performing
modifications to existing ones, the performance of the proposals must be evaluated
in terms of perceived quality by means of the R/D behavior of each encoder. The
distortion metric commonly used in the R/D comparisons is PSNR.

So, in this test environment, we will work with the selected metrics as
candidates to replace the PSNR as the quality metric in a R/D comparison of
different video codecs. In this case, we will use a set of video encoders and video
sequences in order to create distorted sequences Hypothetical Reference Circuit
(HRC) at different bitrates, and analyze the results of the different QAM under
study. Also, we will consider the metric complexity in order to determine their
scope of application. For the tests we have used an Intel Pentium 4 CPU Dual
Core 3.00 GHz with 1 Gbyte RAM. The programming environment used is
Matlab 6.5 Rel.13. The fitting between objective metric values and subjective
DMOS scores was done using the Matlab curve fitting toolbox looking for the
best fit in each case. The codecs under test are:

• H.264/AVC [143]

• Motion-JPEG2000 [144]

• Motion-LTW [145]
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Figure 1.32: PSNR vs DMOSp-PSNR for the evaluated codecs (mobile sequence)

A R/D plot of the different video codecs under test, using the traditional PSNR
as a distortion measure, is shown in the upper panel of Fig. 1.32. It is usual to
evaluate performance of video codecs in a PSNR range varying from 25-27 dB to
38-40 dB, because it is difficult determine which one is better with PSNR values
above 40 dB.

We convert the traditional PSNR to a metric that we call DMOSp-PSNR by
applying the scale-conversion process explained in section 1.5. We can consider
the DMOSp-PSNR metric to be the “subjective” counterpart of the traditional
PSNR. It is the same metric, though expressed in a different scale. The DMOSp
scale denotes distortion, thereby quality increases as DMOSp value decreases.
The main difference between PSNR and its counterpart DMOSp-PSNR is that the
saturation effect is fixed, as we can see in the lower panel at Fig. 1.32. As the only
modification that has been done to the PSNR metric is the mapping process with
the DMOS data, the raw values of the PSNR do not change, therefore DMOSp-
PSNR metric does not fix the known drawbacks shown in Fig. 1.2.
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This saturation effect, at high qualities, is not captured by the traditional PSNR
that increases steadily as the bitrate rises, as shown in the upper panel ofFig. 1.32.
Subjective saturation effect is noticeable above a specific quality value (saturation
threshold) where the DMOSp values practically do not change. In our tests the
saturation threshold were located at a bitrate of 11.58 Mbps. This behavior is
repeated for all the evaluated codecs and video formats, confirming that there is no
noticeable subjective difference when watching the sequences at the two highest
evaluated bitrates (11.58 and 20.65 Mbps).

For each bitrate value below the saturation threshold the DMOSp-PSNR
metric arranges the codecs (by quality) in the same order as the PSNR does,as
expected, because in fact it is the same metric. This quality sorting, below the
saturation threshold, agrees also with the results of the subjective tests thatwe
performed (see below), and this behavior is repeated for all the evaluated
sequences and bitrates.

Since PSNR, and therefore DMOSp-PSNR, are known to be inaccurate
perceptual metrics for image or video quality assessment, we analyze the
remaining metrics under study for all codecs and bitrates. From section 1.5 we
know that the expected behavior of a QAM when scoring an image or sequence
at different bitrates shoud be:

• For bitrate values below the saturation point, it should give a decreasing quality
value as the bitrate decreases.

• For bitrate values above the saturation point, the perceptual quality value should
be almost the same.

So, we run all the metrics for each HRC (sequence and codec) and analyzed
the resulting data between consecutive bitrates, obtaining the quality scoresin
the DMOSp space. Then, a simple subjective DSCQS test was performed with
23 viewers in order to detect if there was or not perceptual differences at high
bitrates, i.e. above the saturation threshold, for the tested sequences. For each
sequence and encoder, the three HRCs with higher bitrates were presented to the
viewers, each time in a different order, so that viewers did not know the rate for
each sequence. These HRCs were: the first one located below saturation point (6.4
Mbps) and the two located in the saturation region. For example in figure 1.32
this three points are located at 6.4 Mbps (below threshold) and the two rightmost
points at 11.58 and 20.65 Mbps. The test shows that:

• All the viewers detected some perceptual differences bellow threshold.
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• No perceptual differences were detected above saturation threshold.

• Above saturation threshold, the DMOSp differences for the tested HRCs vary
from 0.37 to 6.73 DMOSp points depending on the metric, sequence and
encoder. See the whole set of values in tables tab. 1.6 to tab 1.11 at the end of
the chapter.

So, from the results of our subjective test, we can initially conclude that
above saturation differences up to 6.73 DMOSp values are perceptually
indistinguishable.

In figure 1.33 we can see examples of the R/D plots used for comparing the
metrics. Each of these figures, show the resulting DMOSp R/D curves for all
the metrics when applied to the same sequence and encoder at different bitrates.
More figures are shown at the end of this chapter, in section 1.5.4. As shown, in
both examples of figure 1.33, the perceptual saturation effect is captured by all the
QAM at high bitrates (high quality) regardless of the encoder. The same holds for
all the sequences and encoders.

Some metrics are missing in each of the example plots in figure 1.33. In the
upper plot, the HRCs were encoded with the H.264/AVC codec, and therefore
the NRJPEG2000 metric is omitted because it is not designed to handle DCT
transform distortions. In the same way, in the bottom plot, where HRCs were
encoded with M-JPEG2000, the NRJPEGQS metric is omitted because it is not
designed to handle the distortions related to the Wavelet transform.

As mentioned in section 1.5, monotonicity is expected in the mapping
function. So, the expected behavior of the metrics should also be monotonic,i.e.
metrics should indicate lower quality values as the bitrates decreases. However,
if we look at the lower plot of Fig. 1.33, and focusing this time on the two lowest
bitrates, the quality score given by both, the RRIQA and NRJPEG2000 metrics,
increases as the bitrate value decreases. This behavior is contrary to theexpected
one for a QAM. Remember that lower values of DMOSp represent better
perceptual quality. More figures with the same behavior can be found in
section 1.5.4 at the end of this chapter.

To illustrate this behavior, in Fig. 1.34 we show the first frame of the Foreman
sequence at these bitrates (for the QCIF frame size). The left images is encoded
at 70 Kbps, and the right image at 135 Kbps. After a visual comparison, the right
image receives a better subjective score than the left one though the mentioned
metrics state just the opposite in this particular case.

Our results for the compression environment stated that:
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Figure 1.33: QAM comparison using the same sequence with different codecs (a) H264/AVC Intra
(b) M-JPEG2000
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• NRJPEG2000 offers wrong quality scores between the two highest compression
ratios with the M-JPEG2000 codec, for QCIF and CIF sequences.

• RRIQA also failed with this NRJPEG2000 at high compression ratios, but only
for small the Foreman QCIF sequence.

• All the other metrics exhibit a monotonic behavior for all bitrates regardless of
the encoder and sequence being tested.

Figure 1.34: First frame of Foreman QCIF encoded at 70 Kbps (left)and 135 Kbps (right)

Figure 1.33 will also help us to illustrate what was exposed in section 1.5,
heterogeneous metrics should not be compared directly, because the dynamic
range of the subjective quality scores in each training set is different.

Looking at upper plot in fig. 1.33 and focusing this time on the lowest bitrate,
the DMOSp rating differences between metrics arrive surprisingly up to 30.79
DMOSp units. As the test sequence at this rate is the same for all metrics, this
difference seems to be too high and lead us to think that something must be wrong
here. In addition, there are three different behaviors or trends in the R/D curves.
So, let us analyze what is wrong here.

The three different trends in fig. 1.33 correspond to the use of three different
training sets. A exposed previously, VQM-GM was trained with VQEG
sequences, NRJPEGQS was trained only with the JPEG distorted images, and
the rest of the metrics trained with the whole set of distorted images in the Live2
database. Each trend is the result of a curve fitting process with different betas
(parameteres) and these betas are directly dependent of the used training set (the
set of distorted images presented to the viewers). This is the reason why the
trends and slopes of the metrics below the saturation threshold are different and
as shown are “grouped” together in both examples shown in figure 1.33.

So, when including in the same R/D plot, curves from different metrics, it
would be preferable that they are homogeneous, and if not, this fact mustbe told
in order to avoid misleading conclusions about the compared performance
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between heterogeneous metrics. R/D plots with heterogeneous metrics should
not be use to determine which metric is the best, not even R/D plots with only
homogeneous metrics. These type of plots are useful however, to analyze the
behavior of the metrics for each encoder and/or sequence, to compare and
measure differences in quality among metrics while coding at the same rates and
to detect some anomalous behaviors, as the ones presented above.
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Figure 1.35: QAM comparison plot with homogeneous metrics

In figure 1.35 only homogeneous metrics are shown. The trend of all the
R/D curves is the same. Only by inspecting the curves, and comparing the QAM
behavior in the bitrate range, it can not concluded which metric is the best. Isit the
one with better DMOSp for all the bit-rate range? What if this metric is wrongly
overrating the quality given by the observers?

Determining how good a metric works at a specific rate or for a bit-rate range,
depends on how good the metric predicts the subjective scores given by human
viewers, i.e. the best metric is the one who best mimics the human rates. This
information is obtained from parameters like those of tables 1.2 and 1.3.

Our metric performance validation tests data tells that the VIF metric is the
one which best fits the subjective DMOS values among the metrics in the same
“training set”. So in plots, such as those from figure 1.33, the best performing
metric can act as reference. Then, we can compare for each sequence and encoder
how far from the reference the rest of the metrics are. Remember that notall the
metrics can be use to score all the encoders, the metric should be able to handle
the encoder specific produced distortions.
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Table 1.4: Sequences included in the “test set”

Sequence Frame F.Num. F.Rate

Foreman
QCIF: 176 x 144

300
30 fps.

Container

Foreman
CIF: 352 x 288

Container

Mobile 640 x 512 40

Once we have compared and analyzed the behaviors of the metrics and
having chosen the best correlated to human perception one, we proceedwith the
encoder comparison. For this comparison, our “test set” comprise different
standard video sequences commonly used in video coding evaluation as shown in
table 1.4, using only the luminance component. We perform this test for each
QAM being evaluated.

Fig. 1.36 represents an example of one of the R/D plots used for comparing
the performance of the encoders being tested. In this case the plot showshow the
VIF metric evaluate the performance of the encoders. In figures from fig1.61 to
fig 1.95 the rest of the metrics plots are shown.

For metrics “trained” with the same set, the ranking order of the encoders ata
specific bitrate, should agree among metrics, and also with the subjective ranking
given by the viewers. To check this, we performed a simple subjective testwith
23 viewers in order to evaluate if we can trust the codec ranking order given by
each metric, i.e. at a specific bitrate the metric order the encoders by quality in
the same perceptual order that subjective one.

For each rate and sequence the reconstructed sequence of each encoder were
presented simultaneously to the subjects. The ordering of the three sequences
varies for each HRC, so that the subjects did not know which encoder correspond
to each sequence. The subjects ranked the sequences by perceptualquality, if no
differences were detected between pairs of sequences, they annotated thisfact.
After analyzing the viewers scores and removing outliers, the test confirmsthat
the ranking order was consistent among homogeneous metrics, agreeing also with
the subjective ranking.

In cases where viewers scored no subjective difference between two
sequences, the metrics still gave slightly different values between encoders, being
these differences in a range lower than 2.9 DMOSp units. When these differences
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between metric values were higher, for example 3.11 DMOSp units at 2.1 Mb/s
between H264/AVC and M-JPEG2000 in figure 1.36, most of the viewers could
see some perceptual differences between the sequences, since they ranked
H264/AVC to have better perceptual quality than M-JPEG2000 and M-LTW.

In order to determine how much difference, expressed in the DMOSp scale,
is perceptually detectable, deeper subjective tests and research must bedone,
because from our studies, we already detect that the perceptual meaning of these
DMOSp differences depend on the point in the DMOSp scale where we are
working on. For example, for high quality (as stated before), DMOSp value
differences up to 6.73 DMOSp points were imperceptible, however, at lower
quality levels smaller differences (3.11 DMOSp points) were perceived.

15

25

35

45

55

65

0 3 6 9

1
2

1
5

1
8

2
1

D
M
O
S
p

Rate Mb/s

VIF Mobile ITU

H.264/AVC

M JPEG2000

M LTW

Figure 1.36: R/D performance evaluation of the three video codecs using Mobile ITU video se-
quence by means of VIF metric

Table 1.5: QAM Average scoring times (seconds) at frame and sequence level.
QCIF CIF 640 x 512

Frame Seq Frame Seq Frame Seq
MSSIM 0.028 8.4 0.147 44.1 0.764 30.5

VIF 0.347 104.1 1.522 456.5 6.198 247.9
NRJPEGQS 0.01 3 0.049 14.6 0.201 8.1

NRJPEG2000 0.163 48.9 0.486 145.9 1.595 63.8
RRIQA(f.e.) 4.779 1433.7 6.95 2084.9 10.111 404.5

RRIQA(eval.) 0.201 60.2 0.635 190.6 2.535 101.4
DMOSp-PSNR 0.001 0.3 0.006 1.7 0.02 0.8

VQM-GM 0.023 6.975 0.093 27.900 0.300 12.024
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Finally, Table 1.5 shows, grouped by frame sizes, the mean frame evaluation
time and the evaluation time for the whole sequence that each metric spent to
assess its raw quality value.

In the test, we have disaggregated the time spent in performing the quality
comparison from other times spent in performing other steps, for some metrics.
This way we can compare times jointly or in a separate manner. For example,
times spent in the two steps of RRIQA, features extraction (f.e.) and quality
evaluation (eval.), have been separately measured.

So for example if we do not take into account calibration and color conversion
times when comparing against the VQM-GM, for CIF sequences the VQM-GM
is faster than the other metrics, except NRJPEGQS and DMOSp-PSNR.

DMOSp-PSNR is the less computationally expensive metric for all frame
sizes. On the other hand, RRIQA and VIF are the slowest metrics (as they run the
sterable-pyramid, a linear multi-scale, multi-orientation image decomposition).

In MANET environments

Our objective in this section is to analyze the behavior of the candidate metrics in
the presence of packet losses under different MANET scenarios. In order to
model the packet losses in these error prone scenarios, we use a three-state
Hidden Markov Model (HMM) and the methodology presented in [146]. HMMs
are well known for their effectiveness in modeling bursty behavior, relatively
easy configuration, quick execution times and general applicability. So, we
consider that they fit our purpose of accelerating the evaluation process of QAM
for video delivery applications on MANET scenarios, while offering similar
results to the ones obtained by means of simulation or real-life testbeds.
Basically, by the use of the HMM, we define a packet loss model for MANET
that accurately reproduces the packet losses occurring during a video delivery
session.

The modeled MANET scenario is composed of 50 nodes moving in an
870x870 square meters area. Node mobility is based on the random way-point
model, and speed is fixed at a constant value between 1 to 4 m/s. The routing
protocol used is DSR. Every node is equipped with an IEEE 802.11g/e enabled
interface, transmitting at the maximum rate of 54 Mbit/s up to a range of 250
meters. Notice that a QoS differentiated service is provided by IEEE 802.11e
[147]. Concerning traffic, we have six sources of background traffic transmitting
FTP/TCP traffic in the Best Effort MAC Access Category. The foreground traffic
is composed by real traces of an H.264 video encoded (using the ForemanCIF
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video test sequence) at a target rate of 1 Mbit/s. The video source is mapped to
the Video MAC Access Category.

We apply the HMM described above to extract packet arrival/loss patterns for
the simulation traces, and later replicate these patterns for testing. We describe
two environments: (a) congestion related environment, and (b) mobility related
environment.

The congestion environment is composed of 6 scenarios with increasing level
of congestion, from 1 to 6 video sources. The mobility environment is composed
of 3 scenarios with only one video source, but with increasing degrees of node
mobility (from 1 to 4 m/s).

For each of these scenarios we get different packet loss patterns provided by
the HMM that represents each scenario.

After an analysis of the packet losses, different patterns are defined:

• Isolated small bursts represent less than 7 consecutive lost packets. As each
frame is split in 7 packets at source, isolated bursts will affect to 1 or 2 frames,
but none of them will be completely lost. This error pattern is mainly due to
network congestion scenarios, where some packets are discarded dueto
transitory high occupancy in the wireless channel or buffers at relaying nodes.

• Large packet loss bursts. Large Bursts cause the loss of one or more
consecutive frames. Large packe error bursts are typically a consequence of
high mobility scenarios, where the route to the destination node is lost and a
new route discovery process shuld be started. This will keep the networklink
in down state during several seconds, losing a large number of consecutive
packets.

We have used the H.264/AVC codec adjusting the error resilience parameters
to the values proposed in [148], so that the decoder is able to reconstruct sequences
even when large packet loss bursts occurs. H.264/AVC is configured to produce
one I frame every 29 P frames, with no B frames and to split each frame in 7
slices, so we to put each slice into a separate packet and encapsulate its output in
RTP packets. As suggested in [148], we also force 1/3 of the macroblocks of each
frame to be randomly encoded in intra mode.

We have used the Foreman CIF seq. (300 frames at 30 fps) to build an
extended video sequence by repeating the original one up to the desired video
length. After running the encoder for each extended video sequence,we get RTP
packet streams. We will apply them a packet erasure process, removingthose
packets declared lost by the HMM model. This process simulates packet losses
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in the MANET scenarios, so a distorted bitstream will be delivered to the
decoder. The decoder behavior depends on the packet loss burst type as follows:

• When an isolated small bursts appear, the decoder is able to apply error
concealment mechanisms to repair the affected frames. The video quality
decreases, and just after the burst, the reconstructed video quality recovers the
quality by means of the random intra-coded macroblock updating. When the
next I frame arrives, it completely stops error propagation.

• When the decoder faces large bursts, it stops decoding and waits until new
packets arrive. This produces a sequence in the decoder that is shorter than the
original one. Therefore, both sequences are not directly comparablewith the
QAM and so we freeze the last completely decoded frame until the burst ends.

Once we have comparable video sequences (original and decoded video
sequences with the same length), we are able to run the QAM. Each metric
produces an objective quality value for each frame in its own scale. Then,we
perform the scale conversion to the DMOSp scale (see section 1.5).

10

15

20

25

30

35

40

2325 2345 2365 2385 2405 2425 2445 2465 2485 2505 2525 2545

P
S

N
R

-y
 (

d
B

)

Frame Number

Low Compression

Medium Compression

High Compression

Figure 1.37: PSNR frame values during a long packet loss burst (from frame 2327 to 2525) at
different bitrates.

Fig. 1.37 shows the objective quality value in the traditional PSNR scale at
three different compression levels (Low compression, Medium compression and
High compression) during a large packet loss burst. We observe the evolution of
quality during the burst period. What the observer sees during this largeburst is a
frozen frame, with more or less quality depending on the compression level. The
PSNR metric reports that quality drops drastically with the first frame affected by
the burst, and decreasing even more as the difference between the frozen frame
and the current frame increases. Nearly at the middle of the burst, an additional
drop of quality can be observed. It corresponds to a scene change (with the
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beginning of a new cycle of the foreman video sequence). At this point, the
drastic scene change makes the differences between sequences even higher, and
the PSNR metric scores with even worse values, reaching values as low as 10-12
dBs.

On the other hand, the perceived quality changes at these levels is quite
difficult to evaluate. So, a better perceptually designed QAM should not score
such a quality drop in this situation because quality saturates. When the burst
ends, quality rapidly increases because of the arrival of packets belonging to the
same frame number than the current one in the original sequence (frame 2525 in
Fig. 1.37).

If during such a burst a QAM takes into account only the quality of the frozen
frame, disregarding the differences with the original one (which changes over
time), the effect of the burst would remain unnoticed for that metric, i.e. quality
remain constant.

Fig. 1.38 shows the evolution of the candidate QAM during a large burst
(similar to Fig. 1.37 but in this case in the DMOSp space). There is a panel for
each compression level: the upper panel corresponds to high compression, the
central panel to middle compression and the bottom panel to low compression.
We observe some interesting behaviors that we proceed to analyze.

From a perceptual point of view, quality must drop to a minimum when one
or more frames are lost completely and should remain that way until the data flow
is recovered. It should not matter if a scene change takes place inside thelarge
burst. VIF and MSSIM behaves this way. At the point of the burst, wherethe
scene change takes place, both the VIF and MSSIM metrics have almost reached
their ’bad quality’ threshold regardless of the compression level and therefore
there is no substantial change in the reported quality. The drop of quality to the
minimum at the beginning of the burst evidence the lost of whole frames.

NR metrics do not detect the presence of a frozen frame (by dropping the
quality score) as expected because the quality given by these metrics remainat
the level scored for the frozen frame during the burst duration. So, NRmetrics
could not detect the beginning of a large burst, since lost frames will be replaced
with the last correctly decoded frame (frozen frame) and the referenceframes
are not available for comparison. However, NR metrics detect the end of such
bursts. Fig. 1.39 will help us to explain this behavior, showing how reconstruction
is done after a large burst. This figure shows the impairments produced when
the large burst ends. Fig. 1.39(a) is the current frame, the one being transmitted.
Fig. 1.39(b) is the frozen frame that was repeated during the burst duration. When
the burst ends, the decoder progressively reconstruct the sequence using the intra
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Figure 1.38: Metric comparison in the DMOSp space during a very large burst

macroblocks from the incoming video packets. So the decoder partially updates
the frozen frame with the incoming intra macroblocks. This is shown in figures
1.39(c) and 1.39(d) where the face of the foreman appears gradually.

The gradual reconstruction of the frame with the incoming macroblocks is
interpreted in a different way by NR metrics and FR metrics. When the
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(a) (b) (c) (d)

Figure 1.39: Frame reconstruction after a large burst: (a)original frame, (b)last frozen frame,
(c)(d)first and second reconstructed frames after the burst.
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Figure 1.40: End of the large burst for the low compression panel. FR and NR metrics show the
opposite behavior.

macroblocks begin to arrive, what happens at frame 2522 (see figure??) the NR
metrics react scoring down quality, while the FR metrics begin to increase their
quality score, just the opposite behavior. For a NR metric, without a reference
frame, figure 1.39(c) has clearly worse quality than Fig. 1.39(b). But for a FR
metric the corresponding macroblocks between Fig. 1.39(c) and Fig. 1.39(a) help
to increase the scored quality.

So, NR metrics react only when the burst of lost packets affects frames
partially, i.e. isolated bursts, and at the end of a large burst. The NRJPEGQS
metric reacts harder (i.e it shows higher quality differences) than the
NRJPEG2000 because it was designed to detect the blockiness introduced by the
discrete cosine transform. When the frame is fully reconstructed then the score
obtained with NR and FR metrics approaches again to the values achieved before
the burst, which depends on the compression rate.

The RRIQA metric shows high variability in its scores between consecutive
frames inside bursts. These variations become more evident as the degreeof
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compression decreases. The nature of the data sent through the ancillary channel,
18 scalar parameters obtained form the histogram of the wavelet subbands of the
reference image, is very sensitive to loss of synchronism between the reference
frame and the frozen one. On the decoder the same extracted parameters are
statistically compared with the received through the ancillary channel. When this
comparison is performed with two sets of parameters obtained from different
frames, unexpected results appear.

Concerning the FR metrics, MSSIM, VIF and PSNR-DMOSp show a similar
behavior or trend. MSSIM and PSNR-DMOSp show closer quality scores
between them that the ones obtained with the VIF metric, which gives lower
quality values than the other two metrics. This behavior is the same regardless
the compression level inside the large burst. Leaving aside the PSNR-DMOSp,
which is not really a QAM, the other two FR metrics (VIF and MSSIM) have the
same behavior when facing large bursts.
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Figure 1.41: Metric comparison for an isolated burst

Fig. 1.41 shows an isolated burst. In this case, blur and edge shifting
impairments are introduced altering only one frame. This fact is perceived only
by the FR metrics and the NRJPEG2000, which is designed to detect this type of
impairments. The error concealment mechanism of H.264/AVC needs up to 6
frames to achieve the same quality scores obtained before the burst. Fig. 1.42
shows the original frame (a) and three subsequent frames (b,c,d), where the effect
of the lost packets is concealed by the H.264/AVC decoder.
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(a) (b) (c) (d)

Figure 1.42: Packet loss affecting only one frame. (a) Original frame, (b,c,d) next three decoded
frames

As defined previously, an isolated burst can affect one or two consecutive
frames. In the last case, the behavior of the QAM when facing the isolated burst
resembles the behavior of the metrics with a large burst. The difference is that the
concealment mechanisms and the correct reception of part of the frames avoid a
largest drop in the quality.
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Figure 1.43: Frame interval where different type of bursts occurs consecutively.

Figure 1.43 shows multiple consecutive bursts (large and isolated) that behave
as exposed previously. From left to right, we see a large burst followedby an
isolated one. This pattern repeats again one more time, and at the right most part
of the figure, between frames 352 and 372, two large bursts occurs consecutively,
having a gap between them where new incoming packets arrive for a short period
of time (frames 361 and 362).
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Figure 1.44: Detail from two consecutive long burst with incoming packets between them.

(a) (b) (c)

Figure 1.45: Decoded frames between two consecutive bursts, (a) original frame; Reconstructed
frames (b) 361 and (c) 362

In Figure 1.44 we zoom into this area (frames 352 to 372) to analyze why the
behavior of the DMOSp-PSNR metric differs from the other FR metrics during
the gap between bursts. In the gap, the encoder is not able to reconstruct a whole
frame because the gap is too small, i.e. between the two large burst only a small
amount of packets arrive, and this is not enough to reconstruct a wholeframe. So
the involved frames (361 and 362) are partially reconstructed (figures 1.45(b) and
1.45 (c)). Both frames exhibit perfect correspondence in the lower half with the
original one (Fig. 1.45(a)). Therefore, the scored quality must increase, at least to
some extent, compared to the quality of the previous frozen frame, as occurs at
the end of a large burst. This fact is only reflected by the VIF and MSSIM
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metrics. The PSNR-DMOSp metric is not able to detect this because it is
computed using information from the whole frame. For the VIF and the MSSIM,
which are perceptually driven, the lower half of the frame increases theirraw
scores, in the same way as the human scores do. After frame 362, quality
decreases again since the following frame is frozen too. So, VIF and MSSIM
detect two consecutive loss burst while PSNR-DMOSp and the other metrics
considers only a single larger one.

1.5.3 Conclusions

The main goal of this work was focused on looking for a Quality Assessment
Metric that could be used instead of the PSNR when evaluating compressed video
sequences with different encoder proposals at different bitrates, and to analyze the
behavior of such metrics when compressed video is transmitted over error prone
networks such as MANETs.

We explained the procedures that we followed to compare QAM metrics and
alerted about some issues that arise when a comparison between heterogeneous
metrics is made. The metrics must be compared using a common scale since the
raw scores of the metrics are not directly comparable. The scale conversion
process involves subjective tests and the use of mapping functions between the
subjective MOS values and the metrics raw values. The parameters for the
mapping function we used are provided. The metrics were first trained with aset
of images from two open source image and video databases with known MOS
values. The metrics were tested with another set of images and videos also taken
from available databases. In order to perform a fair comparison, the training and
testing sets used with each metric must use only impairments which the metric
was designed to handle. We defined as heterogeneous metrics those that were
trained with different sets of images or sequences. The R/D comparisons of
heterogeneous metrics must be done carefully, focusing not only on the absolute
quality scores, but also on the relative scoring between consecutive bitrates as the
differences between DMOSp values are perceptually detected (or not) depending
on the quality range. When metrics are trained with the same training set,
differences in DMOSp values have the same perceptual meaning for all the
metrics, but this may not be true between heterogeneous metrics. Normalizing
the DMOSp scale when comparing heterogeneous metrics helps to detect these
differences.

We performed the comparison between metrics in two environments: a
compression environment and a packet loss environment. We performed several
subjective tests in order to confirm that the analysis and the behavior of the
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metrics was consistent with human perception. Our tests included the
comparisons of three encoders by replacing the PSNR as distortion metric in
their R/D curves with each of the candidate metrics.

From our results of the compression environment, we conclude that we can
trust on the quality provided by the VIF metric metric, which is the one that
obtains a better fit in terms of DMOS during the calibration process, and on how
it ranks the performance of the tested encoders for the bitrate range under
consideration. The NRJPEG2000 and the RRIQA metrics break monotonicity
for very high compression levels when M-JPEG2000 is the evaluated encoder.
For the rest of the bitrates, all the other metrics show a monotonic behavior for
all the bitrate range and for all encoders.

The choice of a QAM to replace the traditional PSNR, when working in a
compression framework with no packet losses, depends on the availability of the
reference sequence. In applications where the reference sequence is not available,
RRIQA is our choice because behaves similarly to FR metrics. If the reference
sequence is available, the choice depends on the weight given to the trade-off
between computational cost and accuracy. If time is the most important parameter,
we will choose DMOSp-PSNR followed by VQM and MSSIM. If accuracy is
more important, then the choice will be VIF and MSSIM metrics.

In the loss-prone environment, we analyzed the metrics behavior when
measuring reconstructed video sequences encoded and delivered through error
prone wireless networks, like MANETs. In order to obtain an accurate
representation of delivery errors in MANETs, we adopted an HMM modelable
to represent different MANET scenarios.

The results of our analysis are the following: (a) NR metrics are not able
to properly detect and measure the sharp quality drop due to the loss of several
consecutive frames. (b) The RR metric has a non-deterministic behavior in the
presence of packet losses, having difficulties ate identifying and measuring this
effect when the video is encoded with moderate to high compression rates. (c)
Concerning the other metrics, MSSIM, DMOSp-PSNR and VIF show a similar
behavior in all cases. In summary, we consider that, although they exhibit slight
differences in the Packet Loss framework, we propose the use of the MSSIM
metric as a trade-off between a high quality measurement process (resembling
human visual perception) and computational cost.



1.5. Comparison of QAM 89

1.5.4 Figures and Tables

Table 1.6: Variation in DMOSp values between QAM above saturation point for the Foreman QCIF
sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 1,36 1,82 1,79 1,82 1,36

VIF 3,65 4,26 4,13 4,26 3,65
NRJPEGQS 0,82 0,82 0,82

NRJPEG2000 0,68 1,21 1,21 0,68
RRIQA 2,12 2,93 2,31 2,93 2,12

DMOSp-PSNR 2,77 2,91 3,34 3,34 2,77
VQM 0,94 0,80 0,82 0,94 0,80

4,26 0,68

Table 1.7: Variation in DMOSp values between QAM above saturation point for the Foreman CIF
sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 1,84 2,38 3,32 3,32 1,84

VIF 4,18 3,96 4,91 4,91 3,96
NRJPEGQS 0,87 0,87 0,87

NRJPEG2000 0,82 2,43 2,43 0,82
RRIQA 2,72 2,93 2,03 2,93 2,03

DMOSp-PSNR 2,59 2,52 3,68 3,68 2,52
VQM 0,60 0,37 0,40 0,60 0,37

4,91 0,37
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Table 1.8: Variation in DMOSp values between QAM above saturation point for the Container
QCIF sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 2,56 2,30 2,30 2,56 2,30

VIF 4,15 4,61 5,06 5,06 4,15
NRJPEGQS 0,90 0,90 0,90

NRJPEG2000 0,45 0,39 0,45 0,39
RRIQA 5,88 4,38 4,04 5,88 4,04

DMOSp-PSNR 2,61 2,66 3,02 3,02 2,61
VQM 1,96 1,88 0,45 1,96 0,45

5,88 0,39

Table 1.9: Variation in DMOSp values between QAM above saturation point for the Container CIF
sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 2,47 2,50 2,66 2,66 2,47

VIF 5,07 5,41 5,73 5,73 5,07
NRJPEGQS 0,88 0,88 0,88

NRJPEG2000 0,44 0,48 0,48 0,44
RRIQA 6,73 2,53 1,63 6,73 1,63

DMOSp-PSNR 2,67 2,49 2,90 2,90 2,49
VQM 1,06 0,69 1,14 1,14 0,69

6,73 0,44

Table 1.10: Variation in DMOSp values between QAM above saturation pointfor the Moblie ITU
sequence

H.264/AVC M-JPEG2000 M-LTW Max Min
M-SSIM 2,69 3,13 3,10 3,13 2,69

VIF 3,80 3,74 4,18 4,18 3,74
NRJPEGQS 1,45 1,45 1,45

NRJPEG2000 3,62 1,76 3,62 1,76
RRIQA 1,21 2,60 3,85 3,85 1,21

DMOSp-PSNR 2,66 2,84 3,28 3,28 2,66
VQM 0,71 0,81 1,20 1,20 0,71

4,18 0,71
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Table 1.11: Maximun and minimun variation in DMOSp values between QAM above saturation
point for all the sequences

Max Min
Foreman qcif 4,26 0,68
Foreman cif 4,91 0,37

Container qcif 5,88 0,39
Container cif 6,73 0,44
Mobile itu 4,18 0,71

6,73 0,37
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Figure 1.46: QAM comparison figures for Foreman QCIF and H264/AVC codec in Intra mode
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Figure 1.47: QAM comparison figures for Foreman CIF and H264/AVC codec in Intra mode
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Figure 1.48: QAM comparison figures for Container QCIF and H264/AVC codec in Intra mode
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Figure 1.49: QAM comparison figures for Container QCIF and H264/AVC codec in Intra mode
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Figure 1.50: QAM comparison figures for Mobile ITU and H264/AVC codec in Intra mode
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Figure 1.51: QAM comparison figures for Foreman QCIF and JPEG2000 codec
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Figure 1.52: QAM comparison figures for Foreman CIF and JPEG2000 codec
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Figure 1.53: QAM comparison figures for Container QCIF and JPEG2000 codec
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Figure 1.54: QAM comparison figures for Container CIF and JPEG2000 codec
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Figure 1.55: QAM comparison figures for Mobile ITU and JPEG2000 codec
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Figure 1.56: QAM comparison figures for Foreman QCIF and M-LTW codec
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Figure 1.57: QAM comparison figures for Foreman CIF and M-LTW codec
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Figure 1.58: QAM comparison figures for Container QCIF and M-LTW codec
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Figure 1.59: QAM comparison figures for Container CIF and M-LTW codec
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Figure 1.60: QAM comparison figures for Mobile ITU and M-LTW codec
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Figure 1.61: Encoders comparison figures for MSSIM - Foreman QCIF
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Figure 1.62: Encoders comparison figures for MSSIM - Foreman CIF
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Figure 1.63: Encoders comparison figures for MSSIM - Container QCIF
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Figure 1.64: Encoders comparison figures for MSSIM - Container CIF
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Figure 1.65: Encoders comparison figures for MSSIM - Mobile ITU
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Figure 1.66: Encoders comparison figures for VIF - Foreman QCIF
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Figure 1.67: Encoders comparison figures for VIF - Foreman CIF
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Figure 1.68: Encoders comparison figures for VIF - Container QCIF
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Figure 1.69: Encoders comparison figures for VIF - Container CIF
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Figure 1.70: Encoders comparison figures for VIF - Mobile ITU
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Figure 1.71: Encoders comparison figures for NRJPEGQS - Foreman QCIF
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Figure 1.72: Encoders comparison figures for NRJPEGQS - Foreman CIF
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Figure 1.73: Encoders comparison figures for NRJPEGQS - Container QCIF
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Figure 1.74: Encoders comparison figures for NRJPEGQS - Container CIF
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Figure 1.75: Encoders comparison figures for NRJPEGQS - Mobile ITU
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Figure 1.76: Encoders comparison figures for NRJPEG2000 - Foreman QCIF
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Figure 1.77: Encoders comparison figures for NRJPEG2000 - Foreman CIF
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Figure 1.78: Encoders comparison figures for NRJPEG2000 - Container QCIF
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Figure 1.79: Encoders comparison figures for NRJPEG2000 - Container CIF
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Figure 1.80: Encoders comparison figures for NRJPEG2000 - MobileITU
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Figure 1.81: Encoders comparison figures for RRIQA - Foreman QCIF
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Figure 1.82: Encoders comparison figures for RRIQA - Foreman CIF
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Figure 1.83: Encoders comparison figures for RRIQA - Container QCIF
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Figure 1.84: Encoders comparison figures for RRIQA - Container CIF
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Figure 1.85: Encoders comparison figures for RRIQA - Mobile ITU
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Figure 1.86: Encoders comparison figures for DMOSp-PSNR - Foreman QCIF
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Figure 1.87: Encoders comparison figures for DMOSp-PSNR - Foreman CIF
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Figure 1.88: Encoders comparison figures for DMOSp-PSNR - Container QCIF
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Figure 1.89: Encoders comparison figures for DMOSp-PSNR - Container CIF
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Figure 1.90: Encoders comparison figures for DMOSp-PSNR - MobileITU
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Figure 1.91: Encoders comparison figures for VQM - Foreman QCIF
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