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A B S T R A C T

Uniform quantization schemas with dead zone are widely used in image and video codecs. The design of these
quantizers affects to the final R/D performance, being two of the quantizer parameters the responsible for that
variations: the dead zone size and the reconstruction point location inside each quantization step. In this work
we tune the quantizer to obtain the optimum quantization parameters that provide the best R/D behavior for
different quality metrics and rate ranges. Based on a representative image set, we provide the quantization
parameters to encode general imagery, with a R/D performance close to the optimum one. The same study was
done including the Contrast Sensitivity Function in the quantization stage. After an exhaustive experimental test,
the results show that the estimated quantization parameters are able to provide bit rate savings up to 11% at low
and moderate bit rates without additional computational cost.

1. Introduction

The reconstruction quality of image or video encoders is influenced
by many design factors of the encoder and decoder, but one of the most
important factor is the loss of information produced in the quantization
stage. In that stage the design of the quantizer must be carefully done in
order to preserve the image information in such a way that the best
possible image quality is obtained for a target bit rate. In other words,
the quantizer should be designed to obtain the best rate-distortion (R/
D) relationship.

The most widely used quantization schemas used in the image and
video standard codecs are:

• The Uniform Scalar Quantizer (USQ), used for example in the JPEG,
SPITH, MPEG-2, MPEG-4 and JPEG 2000 Part I, among others.

• The Uniform Scalar Dead Zone Quantizer (USDZQ), used in HEVC,
H.263 and H.264/AVC encoders

• The Universal Coded Trellis Quantizer (UTCQ), used in Part II of the
JPEG2000 encoder.

• The Uniform Variable Dead Zone Quantizer (UVDZQ), that is also
used in JPEG 2000 Part II.

These quantization schemas remove the image information of those
transformed coefficients that are located in the interval around zero,
known as the Dead Zone (DZ). In Fig. 1 we can see that the difference

between USQ and USDZQ quantizers is the Dead Zone Size (DZS), while
the quantizer step size remains constant or uniform in both quantizers.
In Fig. 1 the reconstruction point is also represented with a black dot
just at the center of each quantization interval. For example, all the
coefficient values between d1 and d2 were encoded with a value of r1.
At the decoder side, they are reconstructed with the midpoint value
between d1 and d2. The location of this point does not modify the size of
the encoded bitstream but it has an influence on the reconstructed
quality of the image.

A parametrized UVDZQ may be defined to mimic the behavior of
USQ or USDZQ quantizers. The parameters that model the resulting
UVDZQ quantizer are: (1) The dead zone size (DZS), (2) the step size Δ
and (3) the location of the reconstruction point denoted as δ .

The dead zone size is typically expressed as a multiple of Δ (the
quantization step size), i.e. a USQ quantizer has a DZS of 1Δ, meanwhile
a regular USDZQ quantizer has a fixed DZS of 2Δ.

The dead zone size determines the amount of coefficients that are
fully quantized, i.e. set to zero. The value of these coefficients could not
be recovered in the dequantization stage, therefore the dead zone size
should be carefully determined, as affects to the final bit rate and to the
reconstruction quality. The δ parameter is responsible of the location of
the reconstruction point and affects only to the final reconstructed
quality. As a tradeoff between quality and rate is needed, choosing the
optimum combination of these two parameters for a specific image is a
complex task, even more to find an estimated optimum, that could be
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used with any other image, providing reasonably good results in terms
of R/D. The main motivation of this paper, is to study and to analyze
the role of dead zone and reconstruction point parameters in the R/D
performance of wavelet-based image encoders.

Other works in the literature have proposed and analyzed different
uniform scalar quantization schemas. In [1] the authors compared the
performance of USQ, USDZQ and UTCQ schemas with a wavelet based
encoder. Their results show that, although reconstruction errors are
lower with the UTCQ, when combined with zero or high order entropy
coders, the USDZQ was the best option with a careful selection of the
DZS. They found that the USDZQ can effectively reduce the output hits
of the entropy coder. Therefore, the authors stated that a parametrized
USDZQ, i.e. a UVDZQ, is suitable for transform based image compres-
sion systems.

It is common in the literature to set the value of the reconstruction
point, δ, at the middle of the quantization interval [2], or in some cases
set it at the centroid of the coefficient distribution in each quantizer
interval. Nevertheless, there are other recommended positions to locate
δ when using DCT based encoders [3].

Some works also analyze the importance of the DZS and δ para-
meters. In the H.264/AVC standard, a rounding parameter f is proposed
to control the location of the reconstruction point inside each quanti-
zation step size, being f=Δ/3 for intra coding and f=Δ/6 for inter
coding. In [4], the authors apply a variable dead zone quantization
scheme to the H.264/AVC using an offset parameter that modifies how
the f parameter affects the DZS. Thus, the quantizer adjusts better the
location of δ to the shape of the coefficient distribution inside the
quantization intervals.

In [5], analytical studies were performed to obtain the optimum
DZS for a specific bit rate range (up to 1 bpp). They propose an algo-
rithm to obtain the optimum DZS and quantization step Δ. A dead zone
quantizer, designed with those parameters minimizes the mean square
error of the quantized source. The author uses a GGD (Generalized
Gaussian Distribution) to test the algorithm with different types of
coefficient distributions, as Gaussian, Laplacian and others with longer
tails. In all cases, the author maintains δ at the center of the quanti-
zation step.

Also, in [2,6], Marcellin et al. showed the influence of the dead zone
size in the R/D performance of the JPEG2000 encoder using a variable
dead zone quantization schema. They also use a GGD tuned into
Gaussian, Laplacian and longer tail distributions, to cover the varia-
bility observed in the PDFs (Probability Density Functions) of wavelet
coefficients in typical imagery. Authors propose a DZS of 1.5Δ which
provide a very slight decrease in MSE and generate more visually
pleasing low-level texture reconstruction. As there is no optimal δ for
all images, the JPEG2000 standard allows the decoder to freely choose
the value of δ, varying from 0 to 1, using =δ 1/2 for the center of the
interval as a recommended value for most images.

As previously shown, the encoder performance can be increased
using dead zone quantizers and adjusting the DZS. In [7], the authors
performed an experiment with one single image and a wavelet based
encoder to determine which DZS value obtains the best performance.
They measured the quality gain when a USQ quantizer is replaced by an

UVDZQ in a DWT based encoder. The study was done in terms of R/D
performance using the PSNR as quality metric. For that image, an op-
timal DZS of 1.9Δ was obtained providing a quality increase of 0.5 dB.

In the aforementioned studies, different uniform scalar quantizers
were studied, highlighting the influence in the R/D performance of
wavelet-based encoders of both, the DZS and the reconstruction point
location. But other questions remain open, such as (a) which is the
behavior when using perceptual quantization techniques like applying
the Contrast Sensitivity Function (CSF), or (b) when measuring the R/D
performance, what are the gains if different quality metrics are used?

In this work we will cope with these questions by means of a
thorough study to determine how the DZS and δ parameters affect to
the R/D performance of a wavelet-based encoder. So, we will analyze
the optimum quantizer parameters for a training image set, in order to
provide a generalized quantizer parameter set to be used with different
quality metrics and rate ranges. In a preliminary work [7] we obtained
results that did not take into account the application of the CSF. So in
this work we extend our results to also take into account the impact of
the CSF on the optimum quantizer parameters.

In our study we will use a parametrized UVDZQ quantizer in a
wavelet-based encoder. We will compare the UVDZQ R/D performance
with the one obtained by USQ and USDZQ quantizers (the most popular
quantizers used in image and video coding). We will cover a wide rate
range, up to 3 bpp, i.e. from low quality up to the perceptually visually
lossless quality threshold, increasing the value of Δ and providing re-
sults for different rate ranges. We will measure the visual quality using
the PSNR, MS-SSIM [8] and PSNR-HVS-M [9] quality assessment me-
trics.

The rest of the paper is organized as follows: In Section 2 a brief
review of the quality assessment metrics, the quantization schemas used
in this work and a brief introduction to the CSF are presented. In Sec-
tion 3, we describe the evaluation methodology we followed in this
work. In Section 4 the results of our study are exposed and finally, in
Section 5 some conclusions are provided.

2. Quality assessment metrics and quantization schemas

In this section we will briefly review the quality assessment metrics
used in our comparison tests and the USQ, USDZQ and UVDZQ quan-
tization schemas. We will show how the UVDZQ quantizer may be
considered a universal quantizer, being able to behave as an USQ or an
USDZQ by properly tuning the quantization parameters.

2.1. Quality metrics

Quality Assessment Metrics (QAM) are designed taken into account
the knowledge about how the HVS (Human Visual System) assess
quality, or at least they treat the visual information closer to the way in
that the HVS does. Some comparisons of QAM performance using dif-
ferent image databases, distortion types and comparison methods can
be found in [10–13]. In this work we will present the results of the R/D
performance using three different quality metrics, PSNR, MS-SSIM and
PSNR-HVS-M.

Fig. 1. Uniform quantization schemas. Left: USQ DZS=1Δ; Right: USDZQ
DZS= 2Δ
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PSNR is a mathematical measure of dissimilitude between the ori-
ginal and distorted image that should not be considered as a QAM,
because it does not consider any perceptual factors in the way it process
the visual information. Nevertheless, and although it is well known that
PSNR not always capture the distortion perceived by the HVS, it is still
the most widely used metric by the scientific community. The main
reason is that it is simple to calculate, and mathematically easy to deal
for optimization purposes providing an easy way to evaluate the image
and video quality [14].

PSNR is an expression for the ratio between the maximum possible
value (power) of a signal and the power of distorting noise that affects
the quality of its representation. Because many signals have a very wide
dynamic range, the PSNR is usually expressed in the logarithmic scale.

The MS-SSIM (Multi Scale Structural Similarity Index Metric) metric
is being increasingly used to perceptually compare different coding
proposals and it could be considered as a de facto standard for these
purposes. In [11], the authors performed a QAM comparison using
subjective scored color image and video databases, confirming that MS-
SSIM metric is the one that ranks closer to the subjective Mean Opinion
Score (MOS), on average, for a wide variety types of distortions.
However, when we focus on applications like image filtering and image
compression then other metrics like PSNR-HVS-M show better corre-
lation with MOS as stated in [11].

The PSNR-HVS-M metric uses a model of visual between-coefficient
contrast masking of DCT basis functions, so that for each coefficient in a
DCT block, the model gets the maximum distortion that is not visible
due to the between-coefficient masking, taking into account the fact
that the human eye sensitivity to this DCT basis function is determined
by means of the CSF.

We use PSNR as there are still many works that use it to provide
results and as a reference for the reader. Although MSSSIM could be
considered the “facto” standard we included in our study also the PSNR-
HVS-M metric, as it includes the CSF and to show how the proposed
methodology could be applied to different quality assessment metrics
obtaining specific quantization parameters for each one.

In this work, we present the results for each of the aforementioned
metrics, as percentage values instead of averages but following the
same method as in [15,16], as we explain in the Section 3.

2.2. Quantization schemas

Any quantizer can be decomposed into two distinct stages, referred
to as the classification stage (or forward quantization stage) and the
reconstruction stage (or inverse quantization stage). Eqs. (1) and (2) are
the USQ forward and inverse stages. Eqs. (3) and (4) represent these
stages for a USDZQ, and finally Eqs. (5) and (6) correspond to the
UVDZQ stages.
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where C is the transformed coefficient before quantization, ′C is the
quantized coefficient, and C is the recovered value after the inverse
quantization stage. USQ recovers the coefficient value in the middle of

the interval. The constant δ, used in the other schemas, sets the location
of the reconstruction value. Allowed values for δ are in the range [0. .1].
The ξ parameter defines the size of the dead zone. Allowed values for ξ
are in the range −∞( . .1]. Finally, the quantization step size, Δ, de-
termines the amount of quantization and therefore the desired com-
pression level. Depending on the ξ parameter value, the dead zone size
in a UVDZQ is set as follows:

• <ξ 0 increases the typical USDZQ dead zone, i.e. >DZS 2Δ
• =ξ 0 sets the DZS to 2Δ, being Δ the first decision point or threshold
(d1 in Fig. 1).

• < <ξ0 1 reduces typical dead zone size, i.e. <DZS 2Δ, where the
corresponding value for a USQ is =ξ 0.5, which sets =DZS 1Δ.

As ξ approaches to 1 the DZS is reduced, being 0 when =ξ 1. In
order to tune a UVDZQ to act as an USQ we have to set =ξ 0.5 and

=δ 0.5, whereas for a USDZQ we have to set =ξ 0.0 and =δ 0.5 with
the reconstruction point located at the center of the interval.

2.3. The contrast sensitivity function

In this section we briefly introduce the Contrast Sensitivity Function
(CSF) and how it is applied to perceptually weight the wavelet trans-
formed coefficients. A wider description and details of the process can
be found in [17].

Most of Human Visual System (HVS) models account for the varying
sensitivity over spatial frequency, color, and the inhibiting effects of
strong local contrasts or activity, called masking. One of the initial HVS
stages is the visual sensitivity as a function of spatial frequency that is
described by the CSF. A closed form model of the CSF [6] for luminance
images is given by:

= + −H f f e( ) 2.6(0.0192 0.114 ) f(0.114 )1.1
(7)

where spatial frequency is = +f f f( )x y
2 2 1/2 and it is measured in cycles/

degree ( fx and fy, are the horizontal and vertical spatial frequencies).
Usually, spatial frequency is also measured in cycles per optical degree
(cpd), which makes the CSF independent of the viewing distance.

Fig. 2 depicts the CSF curve obtained with Eq. (7). It characterizes
luminance sensitivity as a function of normalized spatial frequency. As
can be seen, the CSF behaves as a bandpass filter being more sensitive
to specific frequencies and less sensitive to very low and very high
frequencies. CSF curves exist for chrominance as well. However, unlike
luminance stimuli, human sensitivity to chrominance stimuli is rela-
tively uniform across spatial frequency.

The CSF-based encoding approach is simple, effective, and widely
used in other wavelet-based image encoders where its benefits were
clearly stated [18–20]. Also, as many other works do, in [21] authors

Fig. 2. Contrast Sensitivity Function.
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demonstrated that the MSE cannot reliably predict the difference of the
perceived quality of two images. So, by means of psychovisual experi-
ments, they proved that the aforementioned CSF model applies to wa-
velet coefficients a perceptual equalization that would help to reduce
the visible artifacts introduced by the lossy coding stage.

In order to properly apply the CSF function to the DWT coefficients,
the mapping between frequency and the CSF-weighting value applied to
each wavelet coefficient is a key issue. As wavelet based codecs perform
multi-resolution signal decomposition, the easiest approach is to find a
unique weighting value for each wavelet frequency subband. If further
decompositions at the frequency domain are done, for example by the
use of packet wavelets, a finer association could be done between fre-
quency and CSF weights [22].

The most common way to implement the CSF curve is by using an
Invariant Scaling Factor Weighting (ISFW) [23]. This approach can be
applied in two ways, depending on the stage of the codec where it will
be applied.

The first one is introduced in some codecs like JPEG2000 by re-
placing the MSE by the CSF-Weighted MSE (WMSE). This is done in the
Post-Compression Rate Distortion Optimization (PCRD-OPT) algorithm
where the WMSE replaces the MSE as the cost function which drives the
formation of quality layers [24].

The second one performs a scaling (or weighting) of wavelet coef-
ficients. It can be introduced after wavelet filtering stage as a simple
multiplication of wavelet coefficients at each frequency subband by the
corresponding weights. We have employed this approach since it is
simple (low complexity) and it leaves the other compression stages
unmodified, allowing portability to other encoders, integration with
different quantization schemes, or even other wavelet filters.

To obtain the weighting matrix, we performed an ISFW im-
plementation obtaining the weighting matrix shown in Table 1 which
provides the scaling weights for a six level wavelet decomposition and
for each orientation subband. These weighting factors were directly
computed from the CSF curve by normalizing its corresponding values
as explained in [17], so that the most perceptually important fre-
quencies are scaled with higher values, while the less important are
preserved. This scaling process increases the magnitude of all wavelet
coefficients, except for the LL subband that are neither scaled nor
quantized.

After the CSF weighting process described above, the upcoming
quantization stage is kept independent, so in this study we will analyze
the behavior of the USQ and the USDZQ quantizer when CSF is applied
or not.

3. Evaluation methodology

In this work we use the C++ implementation of each of the
aforementioned metrics available in the Video Quality Measurement
Tool [25]. We use the wavelet-based image encoder described in [17] to
encode and decode images at different compression levels in order to
get a R/D curve. This encoder is parametrized to include or not a per-
ceptual elevation stage before quantization. The perceptual elevation is
performed by means of a weighting factor table that was built from a
CSF model as explained in [17].

Lately most of the results provided by image and video coding

proposals comparisons are presented in BD-PSNR or BD-Rate metrics
[15,16]. BD-PSNR/BD-Rate is a method to calculate a comparable
average value from a large set of test results. In this way, a single value
can be given to represent the average bit rate savings (BD-Rate) or the
average quality increase (BD-PSNR). A negative BD-Rate indicates a
better performing algorithm since it corresponds to a lower bit rate at
the same quality. A positive BD-PSNR indicates a gain in performance
since it corresponds to a gain in PSNR at the same bit rate. We will
compare the results measuring quality gains (i.e. BD-PSNR) and bit rate
savings (i.e. BD-Rate).

We will analyze the different proposals through R/D performance
curves. In particular, we will compute three R/D curves, one for each
distortion quality metric mentioned before. In addition, this analysis is
done with perceptual elevation (CSF mode) and without it (NOCSF
mode).

For a specific image, different quantization parameters ξ and δ
produce different R/D curves at different Δ (quantization step size). To
perform our study, we use representative images from the Kodak Set (a
set of 23 images of 768×512 pixels) as a training set. We have used
only the image luminance channel in this work, but the proposed
methods could be applied in the same way to the chroma channels. For
each image in the training set we will obtain the ξ and δ parameters
that maximize the R/D performance for each quality metric.

To do that, we created a 2D evaluation space of ξ δ( , ) values with the
ranges shown below to analyze the behavior of the UVDZQ. For each
pair in the evaluation space, we encode and decode the image for in-
creasing values of the quantization step size Δ.

These are the ranges for ξ and δ, to compose the 2D evaluation
space:

• ⩽ ⩽ξ0.250 1 Using steps of ξ0.010 to get 126 different values. This
range produces DZS varying from 2.5Δ to 0 in steps of −0.02Δ

• ⩽ ⩽δ0 1 Using steps of δ0.1 to get 11 different positions varying
from left to right in the quantization interval.

So, finally we obtain all the corresponding ξ δ( , ) combinations of the
quantization parameters for each running mode (CSF and NOCSF).
Then, we will compute three R/D curves (one for each quality metric)
for each of the above combinations, using different Δ values evenly
distributed in the working bit rate range (0 to 3 bpp).

In order to study with more detail the obtained results, we have
established four rate ranges, that are: L for low-rate [0.0. .0.5] bpp, M for
medium-rate [0.5. .1.0] bpp, H for high-rate [1.0. .1.5] bpp and VH stands
for very-high-rate [1.5. .3.0] bpp. By means of the Bjontegaard method,
we can choose the ξ δ( , ) pair that maximizes the area for each rate
range. So, for each rate range we obtain the ξ δ( , ) pair that best R/D
behavior achieves for each perceptual quality metric.

Once we have found the optimum parameters ξ δ( , ) for the UVDZQ
quantizer, we proceed to compare with USQ and USDZQ quantizers.
The R/D curve for the optimum parameters (called COPT), is compared
with the R/D curves for USQ (CUSQ) and USDZQ (CUSDZQ). We will
compare quantizers in both CSF and NOCSF modes, so we may decide
which quantizer is more adequate for CSF-based perceptual coding.

The C C,OPT USQ and CUSDZQ curves have been processed with an au-
tomatic curve fitting process that provides the best fitting for each
quality metric, using polynomial and rational models from the Matlab
curve fitting toolbox. Once we have obtained the fitted equation for
each curve, we can use it to obtain the absolute differences in rate and
quality for each range, and calculate the areas of that curves, and we
can also calculate the percentages of gain or loss of one curve with
respect to the others.

Fig. 3 shows the R/D curves for image number 16 of the training set
working with medium (M) bit rate range and NOCSF running mode. All
the areas are plotted layered. As it can be observed, the area covered by
the COPT (top layer) curve, is smaller than the areas for CUSDZQ (middle
layer) and CUSQ (bottom layer). In Fig. 3 the visible part of the middle

Table 1
CSF Weighting matrix.

Level/Orientation LL LH HH HL

L1 1 1.8087 1.0000 1.2908
L2 1 4.8900 2.2772 3.8166
L3 1 6.5463 5.4529 6.3709
L4 1 5.5814 6.5077 6.0516
L5 1 3.9753 5.2705 4.4666
L6 1 2.7694 3.6969 3.0868
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layer, represents the rate savings when we use COPT instead CUSDZQ. In
the same way, the visible part of bottom layer represents the savings of
CUSDZQ with respect CUSQ, being the sum of the visible middle and
bottom layers the savings of COPT with respect to CUSQ. If we express the
COPT area as a percentage with respect to the other two, in this parti-
cular case we get savings of 1.86% with respect to CUSDZQ and 15.18%
with respect to CUSQ. We also clearly observe that the R/D performance
of the CUSDZQ is closer to the optimum represented by the COPT curve.

As each image in the training set has a different optimum ξ δ( , ) pair,
we compute the average ξ δ( , ) of the training set optimums for each bit
rate range and running mode. This value will be a naive estimation of
the optimum quantization parameter pair to encode any other image.
This ξ δ( , ) estimator is calculated for each metric and rate range under
study.

In Table 2, it can be seen the optimum ξ δ( , ) pairs and its corre-
sponding DZS values, of each image belonging to the training set and
for each quality metric used in this study. These values are obtained
with the NOCSF running mode and L bit rate range. In column DZS we

show the resulting dead zone sizes expressed as multiples of Δ. The last
row presents the average values that will be used as the estimated
quantization parameter pair ξ δ( , ) .

In Table 3, we summarize the optimum quantizer parameters ξ δ( , )
with their corresponding DZS values for CSF and NOCSF running
modes, all quality metrics and all bit rate ranges defined in this work.

Now, after analyzing the training set, we will use a new image test
set composed by 116 commonly used images in the literature, that were
mainly gathered from different public image databases: Center for
Image Processing Research [26], CSIQ Image Quality Database [27],
Institut de Recherche en Communications et Cyberntique de Nantes
[28], LIVE Image Quality Assessment Database [29], The USC-SIPI
Image Database [30] and also some common images we classify as

Fig. 3. Areas (layered) over quality axis for the COPT (top layer), CUSDZQ (mid layer) and
CUSQ (bottom layer) for image 16 in rate range [0.5–1.0], NOCSF running mode, and

PNSR metric.

Table 2
Optimum (ξ δ, ) pairs for images in the training set with NOCSF running mode and L bit rate range.

Image Num. PSNR MS-SSIM PSNR-HVS-M

ξ δ DZS ξ δ DZS ξ δ DZS

1 0.15 0.4 1.70 Δ 0.30 0.50 1.40 Δ 0.20 0.40 1.60 Δ
2 0.18 0.4 1.64 Δ 0.13 0.40 1.74 Δ 0.10 0.40 1.80 Δ
3 0.25 0.4 1.50 Δ 0.22 0.40 1.56 Δ 0.09 0.50 1.82 Δ
4 0.21 0.4 1.58 Δ 0.28 0.40 1.44 Δ 0.21 0.40 1.58 Δ
5 0.24 0.4 1.52 Δ 0.30 0.50 1.40 Δ 0.15 0.40 1.70 Δ
6 0.22 0.4 1.56 Δ 0.37 0.40 1.26 Δ 0.13 0.40 1.74 Δ
7 0.25 0.4 1.50 Δ 0.23 0.50 1.54 Δ 0.20 0.50 1.60 Δ
8 0.25 0.4 1.50 Δ 0.26 0.50 1.48 Δ 0.16 0.50 1.68 Δ
9 0.28 0.4 1.44 Δ 0.25 0.40 1.50 Δ 0.14 0.50 1.72 Δ
10 0.25 0.4 1.50 Δ 0.35 0.40 1.30 Δ 0.08 0.50 1.84 Δ
11 0.17 0.4 1.66 Δ 0.32 0.40 1.36 Δ 0.16 0.40 1.68 Δ
12 0.19 0.4 1.62 Δ 0.34 0.40 1.32 Δ 0.19 0.40 1.62 Δ
13 0.17 0.4 1.66 Δ 0.32 0.50 1.36 Δ 0.11 0.40 1.78 Δ
14 0.21 0.4 1.58 Δ 0.32 0.50 1.36 Δ 0.20 0.40 1.60 Δ
15 0.22 0.4 1.56 Δ 0.34 0.40 1.32 Δ 0.17 0.40 1.66 Δ
16 0.24 0.4 1.52 Δ 0.36 0.40 1.28 Δ 0.22 0.40 1.56 Δ
17 0.22 0.4 1.56 Δ 0.22 0.50 1.56 Δ 0.22 0.40 1.56 Δ
18 0.21 0.4 1.58 Δ 0.28 0.50 1.44 Δ 0.17 0.40 1.66 Δ
19 0.25 0.4 1.50 Δ 0.40 0.40 1.20 Δ 0.25 0.40 1.50 Δ
20 0.23 0.4 1.54 Δ 0.31 0.40 1.38 Δ 0.20 0.40 1.60 Δ
21 0.25 0.4 1.50 Δ 0.25 0.50 1.50 Δ 0.19 0.40 1.62 Δ
22 0.21 0.4 1.58 Δ 0.21 0.50 1.58 Δ 0.23 0.40 1.54 Δ
23 0.24 0.4 1.52 Δ 0.32 0.40 1.36 Δ 0.21 0.50 1.58 Δ

Averages 0.22 0.40 1.56 Δ 0.29 0.44 1.42 Δ 0.17 0.43 1.65 Δ

Table 3
Estimated optimum quantizer settings ξ δ( , ) for each running mode, quality metric and bit
rate range, and its corresponding dead zone size (DZS).

CSF mode NOCSF mode

Quality Metric ξ δ DZS ξ δ DZS

Rate range L from 0 to 0.5 bpp
PSNR 0.44 0.37 1.11 Δ 0.22 0.40 1.56 Δ

MS-SSIM 0.37 0.45 1.27 Δ 0.29 0.44 1.42 Δ
PSNRHVS-M 0.37 0.42 1.26 Δ 0.17 0.43 1.65 Δ

Rate range M from 0.5 to 1.0 bpp
PSNR 0.50 0.34 0.99 Δ 0.26 0.40 1.47 Δ

MS-SSIM 0.49 0.40 1.02 Δ 0.33 0.43 1.35 Δ
PSNRHVS-M 0.43 0.42 1.14 Δ 0.18 0.45 1.65 Δ

Rate range H from 1.0 to 1.5 bpp
PSNR 0.48 0.37 1.05 Δ 0.28 0.40 1.44 Δ

MS-SSIM 0.51 0.40 0.98 Δ 0.32 0.43 1.36 Δ
PSNRHVS-M 0.43 0.42 1.13 Δ 0.18 0.46 1.63 Δ

Rate range VH from 1.5 to 3.0 bpp
PSNR 0.47 0.40 1.06 Δ 0.34 0.40 1.31 Δ

MS-SSIM 0.53 0.39 0.93 Δ 0.40 0.42 1.20 Δ
PSNRHVS-M 0.47 0.41 1.07 Δ 0.27 0.46 1.47 Δ
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Others. The images resolutions in the test set vary from 256×256 up
to 2048× 2560. Some of the images can be found in different image
databases with different names, so in Table 4, we list the images used in
our test set with the name used in its source and grouped by it.

To encode the test set, we used the estimated optimum quantizer
parameter pair ξ δ( , ) (from Table 3) for the corresponding running
mode, quality metric and bit rate range. In the next section, we will
compare the results with the ones obtained by the USQ and USDZQ
quantizers.

4. Results

In this section we present the results of our tests for: (1) images in
the training set, in which the optimum quantizer settings are used, and
(2) images in the test set, in which the estimated optimum quantizer
settings are used.

From data in Table 3 we can see that wide dead zones should be
used when no perceptual elevation is applied to the transformed coef-
ficients. In the other case, when running in the CSF mode, the estimated
optimum, sets the dead zone, in most cases around 1Δ, which means
that the estimated optimum parameters are close to those of a USQ
quantizer. Regarding the δ parameter, that fixes the reconstruction
point in the decoder, is almost constant in all cases and located slightly
left to the center of the quantization interval.

So, a first conclusion thrown by these data is that when the CSF is
applied in the coding process, a USQ quantizer provides better R/D
performance in any rate range in comparison with a USDZQ quantizer.
Nevertheless, when no CSF is applied then the best performing quan-
tizer, is USDZQ. In any case, when using the optimum quantizer para-
meters, a better R/D performance is always obtained.

From Table 3 we can also notice that at higher bit rates the DZS
decreases. For example, focusing in the PSNR metric and NOCSF run-
ning mode, we observe that as bitrate grows, the DZS decreases (from
1.56Δ at L rate range to 1.31Δ at VH) keeping constant the value of the δ
parameter (0.4). The explanation is simple and straightforward since at
higher rates, the information of high frequency wavelet coefficients
(typically coefficients of low magnitude) have a great impact in the
reconstructed image quality, so they should survive to the quantization.
So, in order to get good R/D performance the DZS should be sig-
nificantly reduced. However, the same metric working with the CSF
running mode, keeps nearly constant the DZS in all the bit rate ranges.
This behavior is different when using other metrics, since PSNR does
not properly capture the HVS behavior.

Now we compare the results in terms of bit rate savings and visual
quality gain. First we show results for the training set, i.e. using the
optimum parameters for each image.

In Table 5 we show the results for the training set for each of the
evaluated metrics. The results for both running modes, CSF and NOCSF
are also included in these tables. Results are presented taking as re-
ference the optimum quantizer settings. The visual quality gain values
are the average for each evaluated bit rate range. The rate savings are
expressed as a percentage (BD-Rate).

For example, for PSNR-HVS-M, at the L bit rate range and with the
NOCSF running mode, a quality gain of 0.61 dB and a rate saving of
10.08% are obtained when comparing to the USQ quantizer.

When running in CSF mode the USQ quantizer is closer to the

Table 4
Images used in the Test Set grouped by it sources.

CIPR Still Images Announcer beachgirl bluegirl cablecar cornfield couple flower fruits girl girl_ldisk house hustler kids model sailboat soccer splash
tanaka tree yacht

CSIQ Image Quality Database 1600 aerial_city boston bridge butter_flower cactus child_swimming couple elk family fisher foxy geckos lady_liberty lake log_seaside
monument native_american redwood rushmore shroom snow_leaves sunset_sparrow swarm trolley turtle veggies

IVIC Subjective Database Avion clown isabe pimen
LIVE Image Quality Assessment Database building2 carnivaldolls cemetry churchandcapitol coinsinfountain dancers flowersonih35 house lighthouse manfishing monarch

ocean paintedhouse sailing3 sailing4 statue stream woman
The USCSIPI Image Database 1.4.05 1.4.06 4.1.03 4.1.04 4.1.05 4.1.06 4.2.01 4.2.06 5.1.10 5.1.12 7.1.01 7.1.03 7.1.06 7.1.07 7.1.08 7.1.09 7.1.10 elaine.512
Common Others Aerial airfield airfield2 airplaneU2 balloon barbara bike boat bridge cafe cameraman couple crowd dollar finger flowers girlface

horse houses kiel lena512 man mandrill tank tank2 tiffany trucks woman zelda2

Table 5
Average quality gains and rate savings for TRAINING SET images using as quality metric:
PSNR (top), MSSSIM (middle) and PSNR-HVS-M (bottom), as quality metrics

PSNR

Quality gains (dB) % Rate Savings (bdRate)

vs. USQ vs. UDZQ vs. USQ vs. UDZQ

Rate Ranges With CSF weighting
L 0.18 0.19 4.75 4.98
M 0.29 0.39 4.69 6.31
H 0.30 0.47 3.68 5.65
VH 0.28 0.62 2.36 5.14

Rate Ranges Without CSF weighting
L 0.44 0.05 11.12 1.29
M 0.48 0.12 7.43 1.75
H 0.47 0.15 5.85 1.79
VH 0.34 0.28 2.80 2.21

MSSIM

Quality gains (MSSIM units) % Rate Savings (bdRate)

vs. USQ vs. UDZQ vs. USQ vs. UDZQ

Rate Ranges With CSF weighting
L 0.000 0.001 1.88 4.41
M 0.024 0.090 2.13 2.80
H 0.001 0.001 1.43 5.41
VH 0.000 0.001 1.60 6.37

Rate Ranges Without CSF weighting
L 0.003 0.001 5.60 1.85
M 0.001 0.000 4.39 2.05
H 0.000 0.000 4.12 2.24
VH 0.000 0.000 2.68 2.47

PNSR-HVS-M

Quality gains (dB) % Rate Savings (bdRate)

vs. USQ vs. UDZQ vs. USQ vs. UDZQ

Rate Ranges With CSF weighting
L 0.23 0.25 3.05 3.31
M 0.20 0.50 1.76 4.23
H 0.23 0.68 1.78 4.62
VH 0.22 0.87 1.33 4.86

Rate Ranges Without CSF weighting
L 0.61 0.04 10.08 0.66
M 0.73 0.07 7.48 0.75
H 0.75 0.11 6.43 0.90
VH 0.55 0.32 3.05 1.71
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optimum than the USDZQ quantizer. But when running in NOCSF mode
then, the USDZQ quantizer is the closest one to the optimum. This
behavior is observed for each quality metric and bit rate range.

Here we summarize some of the results for the training set. For the
PSNR metric, when NOCSF is applied we get bit rate savings of up to
11.12%, and quality gains of up to 0.73 dB, with respect to USQ. When
CSF is applied we get rate savings up to 6.31%, and quality gains up to
0.62 dB, with respect to USDZQ. For the MS-SSIM metric, when NOCSF
is applied we get bit rate savings up to 5.60%, and quality gains up to
0.003 MS-SSIM units, with respect to USQ. When CSF is applied we get
rate savings up to 6.37%, and quality gains up to 0.001 MS-SSIM units,
with respect to USDZQ. For the PSNR-HVS-M metric, when NOCSF is
applied we get bit rate savings up to 10.08%, and quality gains up to
0.75 dB, with respect to USQ. When CSF is applied we get rate savings
up to 4.86%, and quality gains up to 0.87 dB, with respect to USDZQ.

Another interesting observation is that MS-SSIM quality metric
provides no quality gains in general, unlike the rest of the quality
metrics. We compute the difference between curves as the difference of
the areas of each curve. Following the Bjontegaard method [15,16], the
area of each curve is calculated using these bounds: for the y-axis the
area is calculated from 0 to the curve itself, and for the x-axis the
bounds are fixed by the corresponding rate range bounds. Therefore
those differences are almost 0. This is due to the narrow dynamic range
of quality values provided by MS-SSIM metric implementation. Fig. 4
shows this fact. The MS-SSIM visual quality ranges from 0 to 1. How-
ever, the lowest quality value obtained was 0.72, so with this im-
plementation of the MS-SSIM, the dynamic range of quality values is
highly reduced.

Now, we will proceed to evaluate the R/D performance of the es-
timated optimum quantizer parameters using the images of the test set.
As previously said, for the estimated optimum, we will use the ξ δ( , )
values obtained from Table 3.

Table 6 shows the average quality gains and the bit rate savings for
the 116 images in the test set. The images have been evaluated for the
two running modes and with all the quality metrics. As shown, the
estimated optimum parameters ξ δ( , ) still provide good results in all
cases, even when the parameters are not the optimum for each in-
dividual image.

In order to summarize some of the result for the test set, comparing
with the USDZQ in the M rate range when the CSF is applied, we get bit
rate savings of 6.77%, 4.97% and 3.63% for the PSNR, MS-SSMIM and
PSNR-HVS-M respectively. Higher bit rate savings are obtained with
respect to the USQ when NOCSF is applied, achieving 9.07%, 5.67%
and 9.59% for PSNR, MS-SSIM and PSNR-HVS-M respectively. The
same behavior observed with the training set is confirmed here,
showing that USQ is closer to the optimum values when CSF is applied
whereas the USDZQ is closer to the optimum when NOCSF is applied.

5. Conclusions

In this work we have used a UVDZQ quantization schema to analyze
how the values of dead zone size and the reconstruction point location
impact on the R/D performance of a wavelet encoder. From this study,
we noticed that each image has a different optimum quantizer para-
meter ξ δ( , ) pair for which the R/D performance is maximized. This
optimum parameter pair is searched in a way that maximizes the R/D
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performance for different rate ranges.
In order to quantify the benefits of using the optimum parameter

pair, the R/D performance of the resulting UVDZQ quantizer is com-
pared with the USQ and USDZQ quantizers, as they are the most
commonly used quantization schemas in image compression. We have
used three different quality metrics, PSNR, MSSSIM and PSNR-HVS-M
in our study.

From the results of the training set we obtain estimated optimum
quantizer parameters for each metric under study. This estimated op-
timums can be used to improve the R/D behavior of wavelet-based
encoders. By selecting a visual quality metric, and using the appropriate
quantization parameters, a better R/D performance is obtained with no
computational overhead and without modifying the rest of the encoder
or decoder stages. In order to be able to apply different quantization
settings, a UVDZQ should be used.

In cases where no UVDZQ is available, the choose of the best per-
forming quantization schema depends on the inclusion or not of a

perceptual weighting stage of the transformed coefficients.
Summarizing some of the results; when we use the proposed esti-

mated optimums, bit rate savings of up to 11.06%, 5.67% and 10.26%
can be obtained for PSNR, MSSSIM and PSNR-HVS-M quality metrics
respectively. Besides average quality gains are obtained for the PSNR
and PSNR-HVS-M of up to 0.51 dB and 0.92 dB respectively.

As future work, more research must be carried out in order to obtain
an adaptive estimator of the optimum quantizer parameters for a single
image. This adaptive estimator could be found by analyzing the cor-
relation of some image statistics with the results provided in this work
so that the final quantization parameters could be inferred from this
correlation. Then the adaptive estimator could be also used in video
sequences including the possibility of learning from previous encoded
frames and so the estimated quantization parameters in the subsequent
frames could be refined.

Nevertheless, the results obtained with the proposed approach are
good enough and close to the ones obtained by the optimum quantizer
parameters.
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