

A Comparison of Block-Matching Motion Estimation Algorithms

María Santamaría and María Trujillo

October 4th 2012 Séptimo Congreso Colombiano de Computación, 7CCC 2012, Medellín - Colombia

Multimedia and Vision Laboratory

Multimedia and Vision Research Laboratory: http://mmv-lab.univalle.edu.co

Universidad del Valle

Content

Laboratorio de Multimedia u Vision

- Motivation
- Motion Estimation
- Block-Matching
 - Distortion Metrics
 - Selected Algorithms
- Evaluation
 - Quality Metrics
 - Performance Metrics
- Video Test Sequences
- Results
- Final Remarks

Motivation

Video coding

Tracking

3D TV

Gesture recognition

Resolution enhancement

http://www.encodedmedia.com/ http://assets.vr-zone.net/15416/LGTV.jpg http://csecar.wordpress.com/ http://www.newelectronics.co.uk/electronics-news/qualcomm-invests-in-gesture-recognition-technology/35620/ http://users.soe.ucsc.edu/~milanfar/research/resolution-enhancement.html

Block-Matching

Reference Frame

- Search area
 - Best matched block
 - Motion vector

The two most popular measures to determine the match between two blocks are: the Mean Square Error (MSE) and the Sum of Absolute Differences (SAD)

Laboratorio de Multimedia y Vision

B. Xiong and C. Zhu, "A new multiplication-free block matching criterion," IEEE Trans. Circuits Syst. Video Technol., vol. 18, no. 10, 2008 Elliot J. Rouse. A virtual curriculum vitae. http://www.elliottjrouse.com/

Full-Search (FS)

- The Full-Search algorithm evaluates all positions in the window search of (2W+1) x (2W+1) size
- It involves high computational cost
- It is simple
- It guarantees a high accuracy in finding the best match

Y. Huzka, and P. Kulla, "Trends in Block-matching Motion Estimation Algorithms," 2004

Three-Step Search (3SS)

The number of stages depends on the initial distance to which the first 9 neighbors are selected

Four-Step Search (4SS)

Each new stage (except the reduced step stage)
 evaluates three or five blocks

L.-M. Po, and W. C.-Ma, "A novel four-step search algorithm for fast block motion estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 3, 1996

Diamond Search (DS)

- Each new stage (except the reduced step stage)
 evaluates four or five blocks
- The neighbors are selected at a mixed distance

Hexagonal Block Search (HEXBS)

It is faster than the DS, but has a lower quality of prediction

Laboratorio de Multimedia y Vision

C.-H. Cheung and L.-M. Po, "Novel cross-diamond-hexagonal search algorithms for fast block motion estimation," IEEE Trans. Multimedia, vol. 7, no. 1, 2005

L.-M. Po, K.-H. Ng, K.-M. Wong, and K.-W. Cheung, "Multi-direction search algorithm for block-based motion estimation," in IEEE Asia Pacific Conf. in Circuits and Systems (APPCAS), 2008

L.-M. Po, K.-H. Ng, K.-M. Wong, and K.-W. Cheung, "Multi-direction search algorithm for block-based motion estimation," in IEEE Asia Pacific Conf. in Circuits and Systems (APPCAS), 2008

Multi-Directional Gradient Descent Search (MDGDS)

Universidad del Valle

L.-M. Po, K.-H. Ng, K.-M. Wong, and K.-W. Cheung, "Multi-direction search algorithm for block-based motion estimation," in IEEE Asia Pacific Conf. in Circuits and Systems (APPCAS), 2008

Multi-Directional Gradient Descent Search (MDGDS)

Universidad del Valle

L.-M. Po, K.-H. Ng, K.-M. Wong, and K.-W. Cheung, "Multi-direction search algorithm for block-based motion estimation," in IEEE Asia Pacific Conf. in Circuits and Systems (APPCAS), 2008

Multi-Directional Gradient Descent Search (MDGDS)

It tries to solve the problem of being trapped in a local minimum

L.-M. Po, K.-H. Ng, K.-M. Wong, and K.-W. Cheung, "Multi-direction search algorithm for block-based motion estimation," in IEEE Asia Pacific Conf. in Circuits and Systems (APPCAS), 2008

Fast Directional Gradient Descent Search (FDGDS)

It is an improvement of the MDGDS that increases the speed of the algorithm and leads to little loss in quality of prediction

Relative Distortion Ratio

 $RDR = \frac{DIRECTIONAL_{MIN}}{CURRENT_{MIN}}$

L.-M. Po, K.-H. Ng, K.-W. Cheung, K.-M. Wong, Y. Uddin, and C.-W. Ting, "Novel Directional Gradient Descent Searches for Fast Block Motion Estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 8, 2009

L.-M. Po, K.-H. Ng, K.-W. Cheung, K.-M. Wong, Y. Uddin, and C.-W. Ting, "Novel Directional Gradient Descent Searches for Fast Block Motion Estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 8, 2009

L.-M. Po, K.-H. Ng, K.-W. Cheung, K.-M. Wong, Y. Uddin, and C.-W. Ting, "Novel Directional Gradient Descent Searches for Fast Block Motion Estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 8, 2009

L.-M. Po, K.-H. Ng, K.-W. Cheung, K.-M. Wong, Y. Uddin, and C.-W. Ting, "Novel Directional Gradient Descent Searches for Fast Block Motion Estimation," IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 8, 2009

Quality Metrics

Universidac del Valle

$$MSE(X,Y) = \frac{1}{MN} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} [X(i,j) - Y(i,j)]^2$$
$$PSNR(X,Y) = 20 \log_{10} \left(\frac{MAX_Y}{\sqrt{MSE(X,Y)}}\right)$$

- It is a point to point metric
- Based on square differences
- It is not very well matched to perceived visual quality

Structural Similarity Index

Laboratorio de Multimedia u Vision

$$SSIM(x, y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_x\sigma_y + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$
$$MSSIM(X, Y) = \frac{1}{n} \sum_{i=0}^{n-1} SSIM(x_i, y_i)$$

- Lt is a windowed metric
- Based on luminance, contrast and structure between an original and a distorted images
- It takes into account the visual perception of the image

Z. Wang, A. C. Bovik, H. R. Sheikh and, E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Trans. Image Process., vol. 13, no. 4, 2004
C. S. varnan, A. Jagan, J. Kaur, D. Jyoti, and D. S. Rao, "Image quality assessment techniques pn spatial domain," International Journal on Computer Science and Technology, vol. 2, no. 3, 2011

Quality Metrics (ii)

Original image PSNR undefinied, SSIM = 1

PSNR = 26.547, SSIM = 0.988

PSNR = 26.547, SSIM = 0.840

PSNR = 26.547, SSIM = 0.913

PSNR = 26.547, SSIM = 0.694

https://ece.uwaterloo.ca/~z70wang/research/ssim/

Performance Metrics

Laboratorio de Multimedia y Vision

Since an algorithm requires time proportional to the number of explored blocks (EXB), the computational cost of a BMA is determined by the EXB

BMA	3SS	4SS	DS	HEXBS	MDGDS	FDGDS
EXB	25	17	13	11	9	9

EXB in the case of Zero Motion Vector (ZMV)

V. Padilla, "Algoritmos de block-matching para compresión de video," Final Career Project, Systems Engineering Program, Universidad del Valle, 2009

Video Test Sequences

Sequence	Size	# Frames	Motion
Akiyo	352x288	300	Small
Mother_ daugthter	352x288	300	Small
Silent	352x288	300	Small
Foreman	352x288	300	Medium
Garden	352x240	115	Medium
Mobile	352x288	300	Medium
Coastguard	352x288	300	Large
Football	352x288	260	Large
Stefan	352x240	300	Large

Block sizes used: 8x8, 16x16 and 32x32

All video sequences used are in uncompressed format: YUV4MPEG, and are available at: http://media.xiph.org/video/derf/

PSNR performance, block size of 8x8 pixels

Results (ii)

SSIM performance, block size of 8x8 pixels

EXB performance, block size of 8x8 pixels

SSIM/EXB performance, block size 8x8 pixels

SSIM performance of various algorithms for Coastguard video sequence

SSIM performance of various algorithms for Football video sequence

SSIM performance of various algoritms for Garden video sequence

Final Remarks

Loboratoria de Multimedia y Visia

The HEXBS shows low computational cost but produces low quality of prediction

- The MDGDS and the FDGDS show low computational cost and produce the highest quality of prediction
- The FGDGS achieves a good trade off between high quality of prediction and a low computation cost

The HEXBS is less affected by the variation in the block sizes, whilst the others show a big loss of prediction by increasing the block size used

THANKS!