Here is some formulation for some of the most widelly used quantizers in image and video compression standards. Not only the direct and inverse quantization step formulation is shwon but also the formulation to calculate the lower and upper bounds, the centroid and the reconstruction point of each decission interval based on parameter 
 (the decission interval index)
In the next equations:
 is the transformed coefficient before quantization
 is the quantized coefficient after the direct quantization step
 is the recovered value after the inverse quantization step
 is a constant used for defining the recovering location in each quantization interval. Allowed values are in the interval ![Rendered by QuickLaTeX.com \left [ 0..1 \right ]](https://momrach.es/wp-content/ql-cache/quicklatex.com-984ef7dce46cc7db5d448d95fedf9365_l3.png)
 is a contant used for defining the size of the deadzone. Allowed values are in the interval ![Rendered by QuickLaTeX.com \left ( -\infty ..1 \right ]](https://momrach.es/wp-content/ql-cache/quicklatex.com-289db2fa0acb36f285b31ccb581cb78a_l3.png)
 is an offset or also known as rounding factor  that sets the width of the deadzone.
  stands for the quantization step size or QStep
 is the value of the lower bound of the decision bin or quantization step with index 
 is the value of the upper bound of interval 
 is the value recovered for interval 
 is the value in the center of interval 
.
USQ – Uniform Scalar Quantizer
This is the general uniform quantizer in its mid-tread form.
General Formulation:
      ![Rendered by QuickLaTeX.com \[ C'=sign(C)\left \lfloor \frac{\left | C \right |}{\Delta} + \frac{1}{2} \right \rfloor \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-f3c0a84471e26d420e68d7d89bfd2732_l3.png)
      ![]()
Quantization Intervals Formulation:
      ![Rendered by QuickLaTeX.com \[ n=0 \rightarrow \left\{\begin{matrix} L_{bn} = - \frac{\Delta}{2} \\ U_{bn} = \frac{\Delta}{2} \\ R_v = C_d = 0 \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-91fda079a536dc196d86d640298633c1_l3.png)
      ![Rendered by QuickLaTeX.com \[ n \neq 0 \rightarrow \left\{\begin{matrix} L_{bn} = \frac{\Delta}{2}(2n-1) \\ U_{bn} = \Delta (n+1) - \frac{\Delta}{2} \\ R_v = C_d = \Delta n \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-71d2eb5b7bfdcc23d4c0da79fa56a17b_l3.png)
UDZQ – Uniform Dead Zone Quantizer
This is the formulation for a standard quantizer with deadzone twice the size of the Qstep.
General Formulation:
      ![Rendered by QuickLaTeX.com \[ C'=sign(C)\left \lfloor \frac{\left | C \right | }{\Delta} \right \rfloor \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-59eac1bd0a748ca9a7bfde54313b45af_l3.png)
      ![]()
Quantization Intervals Formulation:
      ![Rendered by QuickLaTeX.com \[ n=0 \rightarrow \left\{\begin{matrix} L_{bn} = -\Delta \\ U_{bn} = \Delta \\ R_v = C_d = 0 \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-5dd9cf6849902c2c14f5a4109ba4abfc_l3.png)
      ![Rendered by QuickLaTeX.com \[ n > 0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta n \\ U_{bn} = \Delta(n+1) \\ R_v = \Delta (n + \delta) \\ C_d = \Delta n + \frac{\Delta}{2} \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-ad175da6c03eaa5f4a2a11cb556377dc_l3.png)
      ![Rendered by QuickLaTeX.com \[ n < 0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta (n-1) \\ U_{bn} = \Delta n \\ R_v = \Delta (n - \delta) \\ C_d = \Delta n - \frac{\Delta}{2} \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-219259170fca18d15421b88b9d6dc6e1_l3.png)
UDZQ+O – Uniform Dead Zone Quantizer + Offset
General Formulation:
      ![Rendered by QuickLaTeX.com \[ C'= sign(C)\left \lfloor \frac{\left | C \right | + f }{\Delta} \right \rfloor \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-433652080f16843bc56eb9b78206e52c_l3.png)
      ![]()
Quantization Intervals Formulation:
      ![Rendered by QuickLaTeX.com \[ n=0 \rightarrow \left\{\begin{matrix} L_{bn} = -\Delta + f \\ U_{bn} = \Delta - f \\ R_v = C_d = 0 \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-b1940b87eb8746b3486afc39afc00944_l3.png)
      ![Rendered by QuickLaTeX.com \[ n > 0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta n -f \\ U_{bn} = \Delta (n+1)-f \\ R_v = \Delta n \\ C_d = \Delta (n + \frac{1}{2}) - f \end{matrix} \right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-295761f5c9d46f15eae374506fd0a13a_l3.png)
      ![Rendered by QuickLaTeX.com \[ n < 0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta (n-1)+ f \\ U_{bn} = \Delta (n)+ f \\ R_v = \Delta n \\ C_d = \Delta (n - \frac{1}{2}) +f \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-dffde6a7855b2d899684ac5cae6b999e_l3.png)
UVDZQ – Uniform Variable Dead Zone Quantizer.
General Formulation:
      ![Rendered by QuickLaTeX.com \[ C'= \left\{\begin{matrix} sign(C)\lfloor \frac{\left | C \right | +\xi \Delta}{\Delta} \rfloor & if \left | C \right | \geq -\xi\Delta \\ 0 & if \left | C \right | < -\xi\Delta \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-6536b07c14d819207cb6f62884350dc3_l3.png)
      ![Rendered by QuickLaTeX.com \[ \hat{C} = \left\{\begin{matrix} sign(C')(\left | C' \right | - \xi + \delta ) \Delta & if C' \neq 0 \\ 0 & if C' =0 \end{matrix}\right. \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-d9b747a2158da2c4aed45fa1e4b05bfb_l3.png)
Quantization Intervals Formulation:
      ![Rendered by QuickLaTeX.com \[ n=0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta (\xi-1) \\ U_{bn} = \Delta (1-\xi) \\ R_v = C_d = 0 \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-b1aa35f97215c5de3f6ae077aed8ed37_l3.png)
      ![Rendered by QuickLaTeX.com \[ n > 0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta (n-\xi) \\ U_{bn} = \Delta (n+1-\xi) \\ R_v = \Delta (n-\xi+\Delta)-\delta \\ C_d = \Delta (n-\xi)+\frac{\Delta}{2} \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-0e7b0da349a8040b88e6e18289d5a2b3_l3.png)
      ![Rendered by QuickLaTeX.com \[ n < 0 \rightarrow \left\{\begin{matrix} L_{bn} = \Delta (n-1+\xi) \\ U_{bn} = \Delta (n+\xi) \\ R_v = \Delta (n+\xi-\Delta)+\delta \\ C_d = \Delta (n+\xi)-\frac{\Delta}{2} \end{matrix}\right \]](https://momrach.es/wp-content/ql-cache/quicklatex.com-fc967145ff0dbc514f71cf830ea1dff9_l3.png)