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Abstract

This paper introduces a hybrid neural network model combining Convolutional Neu-
ral Networks (CNNs) and Artificial Neural Networks (ANNs) to optimize the quantiza-
tion parameter (QP) for 64× 64 blocks in the Versatile Video Coding (VVC) standard,
enhancing both video quality and compression efficiency. Leveraging CNNs for spa-
tial feature extraction and ANNs for structured data handling, the model addresses
the limitations of current heuristic and Just Noticeable Distortion (JND) based meth-
ods. The methodology includes generating and preprocessing a dataset of luminance
channel image blocks encoded with various QP values and designing a hybrid network
with convolutional layers and dense layers. Performance evaluations using metrics like
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE) demonstrate the model’s efficacy, achieving significant BD-Rate gains for
resolutions, particularly 720p and 1080p, when assessed with WPSNR and MS-SSIM
metrics. These results indicate that the proposed model not only improves compres-
sion efficiency but also maintains or enhances visual quality, suggesting its practical
application in video coding.
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1 Introduction

Video compression plays a crucial role in the efficient storage and transmission of multimedia
content. With the advent of high-resolution video formats and the increasing demand for
streaming services, developing effective compression techniques has become more important
than ever. The Versatile Video Coding (VVC) standard, also known as H.266, is the latest
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advancement in video compression technology, offering improved coding efficiency compared
to its predecessors. However, optimizing the quantization parameter (QP) for individual
blocks within a video remains a significant challenge, as it directly impacts the balance
between video quality and compression efficiency.

Current methods for determining the QP value often rely on heuristic approaches or
traditional Just Noticeable Distortion (JND) models [1]–[4]. While these methods have
shown some success, they are limited in their ability to accurately predict the optimal QP
value, especially when dealing with diverse video content. Moreover, these methods typically
do not leverage the full potential of available data, such as the spatial characteristics of video
blocks and other structured information.

To address these limitations, we propose a hybrid neural network model that combines
a convolutional neural network (CNN) with structured data inputs to determine the optimal
QP value for 64×64 blocks in the VVC standard. Our approach aims to enhance compression
prediction accuracy by integrating the strengths of CNNs in capturing spatial features from
image data and artificial neural networks (ANNs) in handling structured data.

2 Methodology

This section details the methodology used for designing and evaluating the proposed hybrid
model. First, the generation and preprocessing of the dataset consisting of 64 × 64 pixel
image blocks using the luminance channel are described. Next, the architecture of the
hybrid neural network, which integrates a convolutional neural network (CNN) for image
processing and an artificial neural network (ANN) for handling structured data, is presented.
Finally, the normalization and preprocessing techniques applied to the data before being
fed into the neural network are explained.

2.1 Dataset preparation

A dataset of 64× 64 pixel image blocks, using only the luminance channel, has been devel-
oped. This dataset is designed to train and evaluate a hybrid convolutional neural network
model. The images were extracted from a series of test sequences conforming to the VVC
coding standard, following the specifications outlined in the document [5].

For dataset generation, the VVC (Versatile Video Coding) reference software, known
as VTM (VVC Test Model) [6], was used and modified to partition the video exclusively
into 64 × 64 blocks and store them into a CSV (comma-separated values) file. Each video
sequence was encoded in All-Intra mode, with a wide range of QP (Quantization Parameter)
values from 12 to 47. This value is stored in the dataset as QPbase and will be one of the
input elements to the neural network.

During the encoding process, each frame is partitioned into 64 × 64 blocks, and Rate-
Distortion Optimization (RDO) is used to decide how to encode in a way that minimizes

©CMMSE ISBN: 978-84-616-9216-3



Ruiz Atencia, Javier et al.

visual distortion (i.e., loss of quality) while controlling the amount of data needed to repre-
sent that block (i.e., bit rate). This cost function is mathematically formalized as follows:

min
pk

DSSE
k (pk) + λ ·Rk(pk) (1)

where DSSE
k denotes the sum of squared errors (SSE) for a block Bk, Rk(pk) is the rate

for a block Bk, λ is the Lagrange multiplier, which depends on the QP value, and pk is the
vector of encoding decisions for the block Bk.

At this stage, further modifications were made to the VTM reference software. In the
RDO, a weighted SSE distortion metric based on the WPSNR (Weighted Peak Signal-to-
Noise Ratio) [7] was used instead of the conventional SSE distortion measure. Therefore,
Equation 1 is modified as follows:

min
pk

wk ·DSSE
k (pk) + λ ·Rk(pk) (2)

where wk is the weighting factor for a Bk. In addition, a process of searching for the
perceptually optimal QP value has been conducted. For this purpose, we have added a new
stage to the encoding process that allows us to use a range of QP values around the QPbase.
The variable that controls this QP offset is called ∆QP , and it is defined as:

∆QP ∈ {−6,−5, . . . , 5, 6} (3)

This means that, for each block, a total of thirteen different QP values are evaluated.
For each of these encodings, the weighted RDO is performed (Equation 2), and after all
the encoding processes, the ∆QP value that minimizes the cost of the RDO is considered
the ground truth and is stored in the dataset, along with the block pixels in the luminance
channel. Figure 1 summarizes the entire process described for a given QPbase value.

After processing the CSV, the dataset is stored in a pandas DataFrame (Python) with
the following columns and data types:

• QP base (int): Initial quantization parameter value.

• QP delta (int): Optimal ∆QP value for the block.

• BPF (float): Number of 64 × 64 blocks per frame (BPF). Needed because WPSNR
metric is frame size dependent.

• pix xxxx (int): Luminance value of the pixel xxxx.

Here is a sample of the dataset structure:
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Start encoding CU,
depth = 0, size = 64x64

Rate Distortion Optimization
Process (RDO): Cost

WPSNR based
distortion

i = -6
minCost = INT_MAX

FALSE

TRUEi > 6

QP = QPbase + i

Encoding CU

TRUE

FALSE Cost < minCost

minCost = Cost
ΔQP = QP

i ++ to CSV (CU,
QPbase, ΔQP)

next CU

Figure 1: Flow chart of image database extraction.

QP base QP delta BPF pix 0001 pix 0002 . . . pix 4096 pix 4096

32 -3 225.00 217 218 . . . 212 215
17 -2 2025.00 115 146 . . . 26 31
26 3 506.25 101 105 . . . 29 36
35 -1 2025.00 210 210 . . . 103 100

Table 1: Example structure of the dataset.
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2.2 Hybrid neural network proposal

Our proposal model comprises two main subnetworks: a convolutional neural network
(CNN) for processing images and an artificial neural network (ANN) for handling structured
data. These subnetworks are integrated into dense layers to produce the final output.

The image input is fed into a CNN. Initially, we based our approach on simple, pre-
trained CNN models such as EfficientNet [8] and MobileNetV3-Small [9], adapting their
architectures to meet our specific requirements. However, our experiments demonstrated
that a straightforward neural network consisting of only two convolutional layers converged
to a solution with a lower error rate. Consequently, we decided to abandon the use of these
pre-trained networks in favor of our simpler, yet more effective, architecture.

To design the architecture of our neural network and to search for optimal hyperpa-
rameters, we utilized Keras with TensorFlow as the backend. Additionally, Keras Tuner
was employed to perform an extensive hyperparameter search, ensuring that our model con-
figuration was both efficient and effective. This combination allowed us to streamline the
development process, leveraging the robust features of Keras and the comprehensive tuning
capabilities of Keras Tuner.

The input layer expects images of shape (64, 64, 1). Two convolutional layers (98 and
146 filters with a kernel size of 5 × 5 and ReLU activation) are used to capture complex
features from the images, followed by a MaxPooling layer with a 2 × 2 window to reduce
the dimensionality. A Dropout layer before the second convolutional is applied to prevent
overfitting. The output is then flattened into a one-dimensional vector.

Parallel to this, the structured data input is processed through an ANN. The input
layer expects data of shape (2,), which is the QPbase and the BPF . A dense layer with 42
units and ReLU activation is applied, followed by a Dropout layer.

The outputs from the CNN and ANN are concatenated into a single vector. This
combined vector passes through additional dense layers: the first with 134 units and ReLU
activation, followed by a Dropout layer, and a second dense layer with 71 units and ReLU
activation. The final output layer has a single unit with a linear activation function, where
the output, ∆QP is constrained within the range [−6, 6]. Figure 2 shows the architecture
of our proposed model.

Prior to feeding the data into the neural network, the input values were preprocessed.
The image blocks were scaled by dividing each pixel value by 255, as we set the input
bitdepth to 8 at the encoder configuration (Equation 4). Additionally, the structured data
vector was normalized using the StandardScaler method, which standardizes the features
by removing the mean and scaling to unit variance (Equation 7).

Inputpixel =
Datapixel

255
(4)
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Block_input
<64,64,1>

Conv2D

kernel <5,5,1,98>
bias <98>

activation <ReLU>

MaxPooling2D

Dropout

MaxPooling2D
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Concatenate

Structured_input
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Dropout
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kernel <2,42>
bias <42>

activation <ReLU>
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kernel <24716,134>
bias <134>

activation <ReLU>
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activation <ReLU>
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kernel <71,1>
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Figure 2: Diagram of our proposed hybrid CNN+Ann model.

µ =
1

N

N∑
i=1

Datastruct (5)

σ =

√√√√ 1

N

N∑
i=1

(Datastruct − µ)2 (6)

Inputstruct =
Datastruct − µ

σ
(7)
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3 Results and Discussion

In this part, the result of the training of our hybrid neural network will be shown. In
addition, the result of its implementation in the VVC reference software will be shown, as
well as its comparison with the native perceptual coding algorithm.

To begin, Figure 3 shows the evolution of the training and validation loss of our proposed
hybrid model across 100 training epochs. The plot provides valuable insights into our
model’s performance. Initially, both losses decrease rapidly, indicating effective learning
and good generalization of our proposed architecture. However, around epoch 50, while the
training loss continues to decrease, the validation loss stabilizes and fluctuates, suggesting
overfitting, which negatively impacts its performance on new data.
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Figure 3: Training and Validation Loss. The plot shows the Mean Squared Error (MSE)
loss for both training and validation datasets across 100 epochs.

Choosing epoch 53 for the final model strikes a balance between minimizing training loss
and avoiding overfitting. At this point, the model benefits from sufficient training without
significantly compromising its generalization ability. This careful selection ensures robust
performance across unseen blocks of images, optimizing the trade-off between learning and
generalization. This can be seen in Table 2, where the different performance metrics, such as
MSE, RMS and MAE, applied to the different dataset partitions obtain practically identical
results.

The confusion matrix (Figure 4) for the test dataset provides a comprehensive overview
of the model’s performance. The diagonal elements of the matrix, representing the correctly
predicted instances for each class, show high values, indicating that the model performs well
in accurately classifying most of the labels. Notably, classes like -1, 0, and 1 have particularly
high correct predictions, reflected by the large numbers on the diagonal.
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Table 2: Loss values for the model (epoch 39)
MSE RMSE MAE

Train 2.067 1.438 0.994

Validation 2.012 1.418 0.986

Test 2.078 1.442 1.002

Given that the model is not a classification but a regression function, the misclassifi-
cations observed in the confusion matrix are minor. Most of misclassified predictions are
only one or two positions away from the true labels, which implies that the model’s errors
are small and localized. This close alignment between true and predicted labels, even when
incorrect, suggests that the model maintains a reasonable level of accuracy and that the
errors are not drastically off the mark.
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Figure 4: Confusion matrix for Test dataset.

Once our neural network model was trained and evaluated, it was integrated into the
VVC reference software, VTM, to perform inference on 64 × 64 CU blocks to be encoded.
To import the model, we utilized the TensorFlow C API.

Following the integration of our code, we proceeded to evaluate our implementation
using the sequences specified in the VTM common test conditions [5], which include video
sequences of varying resolutions, from 240p to 4K.

For comparative analysis, we selected the QPA algorithm [7], which derives the ∆QP
value on a visual sensitivity measure based on a local energy measure of high-pass filtered
original samples. The default QPA algorithm performs two steps. The first one at CTU
level (128 × 128 pixels blocks), obtaining a ∆QP128. Then, at CU level (64 × 64 pixels
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blocks), it obtains another ∆QP64, which uses as base QP the ∆QP128 inherited from its
CTU. In order to compare our model, based only on blocks of size 64×64, we have disabled
the QPA algorithm at the CTU level.

Upon executing the tests for base QP values of 22, 27, 32, 37, and 42, we obtained the
following Bjøntegaard delta rate (BD-Rate) [10] values (see Table 3), with executions that
did not apply any perceptual mechanism serving as the reference.

Negative values indicate gains, while positive values indicate losses. The table below
shows the results for the WPSNR metric, which our model was trained on, and the MS-SSIM
metric [11].

Table 3: BD-Rate results of default QPA algorithm (applied only to 64 × 64 block sizes)
and our proposed algorithm.

Sequence
resolution

BD-Rate (%)
WPSNR MS-SSIM

QPA 64 Ours QPA 64 Ours

2160p -3.698 -4.606 -5.135 -1.659
1080p 0.508 -4.764 -0.942 -7.203
720p 0.674 -6.035 -1.029 -18.715
480p 0.520 -5.087 -1.647 -8.045
240p 1.347 3.140 0.610 -5.592

Our analysis indicates that the proposed model consistently achieves negative BD-Rate
values, demonstrating gains in most resolutions, particularly at higher resolutions like 720p
and 1080p. For the WPSNR metric, our model outperforms QPA algorithm in all but the
240p resolution, where there is a slight increase in the BD-Rate. This suggests that, based
on WPSNR metric, our model effectively improves compression efficiency while maintaining
visual quality, but it does not perform well at lowest video resolutions.

When evaluated with the MS-SSIM metric, our model again shows significant improve-
ments over QPA, especially at 720p and 1080p resolutions, indicating better perceptual
quality preservation. The only notable exception is at 2160p (4K sequences), where al-
though our model has gains, the QPA algorithm obtains a significantly higher value than
our proposal.

Overall, the results affirm the effectiveness of our hybrid neural network model in en-
hancing the perceptual performance of video compression, demonstrating its potential for
practical application in the framework of video coding in the VVC standard, outperforming
the default perceptual algorithm.
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4 Conclusion

In this study, we proposed a hybrid neural network model combining a convolutional neural
network (CNN) and structured data for determining the quantization parameter (QP) value
in 64× 64 blocks in the Versatile Video Coding (VVC) standard. Our model, integrating a
CNN for image processing and an artificial neural network (ANN) for structured data, aimed
to enhance compression prediction accuracy. Performance was evaluated using metrics such
as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE).

The results demonstrate that our hybrid model consistently outperforms existing meth-
ods, achieving lower error rates across various dataset partitions. Notably, our model
achieved significant gains in BD-Rate for most resolutions, particularly at 720p and 1080p,
when assessed with both the WPSNR and MS-SSIM metrics. This indicates that our
approach not only improves compression efficiency but also maintains or enhances visual
quality, especially at higher resolutions.

In future work, we aim to further optimize the hybrid neural network model by explor-
ing advanced hyperparameter tuning techniques and incorporating additional features that
impact video compression. Specifically, we plan to work with 32× 32 blocks to evaluate if
this leads to even greater perceptual gains. Regarding the neural network architecture, we
intend to add more structured data to the network, which could help the model converge
faster and achieve lower loss.
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